THE MEASURABLE DIFFERENCE.

OXYGEN TRAINING > Formulas

> Statistics

FII

CONTENT

> Adding Math Channels
$>$ Creating Formulas
> Standard Operations
> Trigonometric
$>$ Logical
> Measurement
> Miscellaneous
> Creation of Reference Curves in Time Domain
> Array channel support for formulas
$>$ Creating Statistics
> Array channel support for statistics
$>$ Creating Filters
> Offline Math

ADD MATH CALCULATIONS TO THE MEASUREMENT SETUP

(1) To create
> Formulas
> Order analysis modules
> Rosette calculations
press the + button
Select the proper calculation and press Add
(2) Reference channels must be selected before creating
$>$ Statistics
> Filters
$>$ FFT
> Swept sine analysis
> Psophometers

CREATING A FORMULA

SIMPLE EXAMPLES

MATHEMATICAL OPERATIONS - STANDARD OPERATIONS

MATHEMATICAL OPERATIONS - TRIGONOMETRIC

MATHEMATICAL OPERATIONS - LOGIC

MATHEMATICAL OPERATIONS - MEASUREMENT

MATHEMATICAL OPERATIONS - MEASUREMENT

(1) Standard operations
(2) Trigonometric operations
(3)

Logical operations
(4) Measurement operations
(5) Misc

hold('SIGNAL_VAL','SIGNAL_COND'>5)

MATHEMATICAL OPERATIONS - MISC

MATHEMATICAL OPERATIONS - MEASUREMENT TIME

(1)

Measurement time function can be used
$\square \square_{\text {Math formula }}^{\text {femula }}$

Measurement Time
Unit
to generate reference curves in time domain
Create a formula determining the measurement time
(2) Open the scaling options of this channel which are accessible in the Channel List
(3) The table scaling can be used to define the boundary points of the reference curve
(4) Can be displayed in a Recorder to check if the channel(s) exceeds the limit or is within the limit

MATH FORMULA
mtime + 'Al $1 / 11$ Sim'* ${ }^{\prime}$

MATHEMATICAL OPERATIONS - MEASUREMENT TIME

(1)

Measurement time can be easily displayed on the screen as it can be dragged and dropped to a Text instrument directly from its properties

ARRAY MATH FORMULAS

Array channels such as Harmonics, FFT or CPB channels can be used in Formulas
(1) Basic math operations for arrays with same dimensions
supported: + - * /
(2) Operations $(+-* /)$ with constants supported

Output is always a new
array channel with same
dimensions

ARRAY MATH FORMULAS

	Possibility to use
(3)	Standard operators
(4)	Trigonometric operators
(5)	Logic operators

'U1_hRMS@POWER_3PH' and|'U2_hRMS@POWER_3PH'

<	3 of 6 Logic		>	(5)
$<$	\leq	>	\geq	
$=$	\neq	and	or	
not	if	isnan		

ARRAY MATH FORMULAS

> Exctraction of adjacent elements into a new array in C++ / Python syntax (6)
$>$ First element of array is always 0 !
> Optional step size definition (7)
$>$ Creation of arrays with constants (8)

Formula			Formula 0		Unit v		《 >> X	
MATH FORMULA								
				Group name Formula				
'U1_hRMS@POWER_1PH'[0:10:2]								
<			>	7	8	9	\leftarrow	,
e	I	min	max	4	5	6	x	1
abs	$x^{\wedge} \mathrm{y}$	e^{\wedge}	2^{\wedge}	1	2	3	+	-
In	\log	\checkmark	*			.	1	$)$

PREVIEW
'U_1/2' $0+[1,2,3,4,5]$
(8)

$<$	$\begin{gathered} \text { 1of6 } \\ \text { Standard } \end{gathered}$		>
e	п	min	max
abs	$x^{\wedge} \mathrm{y}$	${ }^{\wedge}$	${ }^{2 \wedge}$
In	\log	\checkmark	\%

PREVIEW

CREATING STATISTICS

（1）Select one or several channels by checking their check boxes and press the ＋button
（2）Select Statistics，choose the proper calculations（several can be selected） and the desired time window
（3）Press Add afterwards to create these channels
（4）A separate output channel for each reference channel and calculation is created
（5）
Changes can still be applied by entering the settings of the desired channel via the Gear button
（6）Select if calculation（starting at acquisition start）shall be reset at recording start

CALCULATION REMARKS

Calculation remarks can be seen on the right hand side

If rolling (overall) statistics, i.e. maximum value during the measurement are required, refer to the functions in the table below which are available in the formula setup

These formulas are reset at measurement start

Additionally, user defined reset events can be defined, i.e. ch1 decreases 0
racrms and rp2p are not available in the menu but can be typed into the formula editor manually

FURTHER STATISTICS (AVAILABLE SINCE R6.1)

Peak-Peak: Calculates the peak-peak value

SUM: Calculates the sum

MIN Time: Determines the time, where the minimum of the signal was reached

MAX Time: Determines the time, where the maximum of the signal was reached

COUNT: Counts the number of samples in one measurement block

Variance: Calculates the variance (squared ACRMS value)

Coefficient of Variance (CV): Calculates the Coefficient of variance (division of ACRMS and AVG)

Peak: Calculates the peak value
Crest: Calculates the crest factor (division of the MAX and RMS value)

OVERALPPING STATISTICS (AVAILABLE SINCE R6.1)

Overlapping Window size

0 \% (behaviour until now)
50 \%
75 \%
80 \%
90 \%
95 \%

OVERALL STATISTICS (AVAILABLE SINCE R6.1)

Outputs one overall value from recording start to recording end
\rightarrow Reset on measurement start

No time history included

TRIGGERED STATISTICS (AVAILABLE SINCE R6.2)

Begins statistics

calculation on trigger
Trigger event can be on rising or falling edge

Stop modes:

- Retrigger
- Duration
- Stop trigger

Stop mode	Stop trigger Retrigger Duration Stop trigger

RUNNING STATISTICS (AVAILABLE SINCE R6.2)

Inherits sample rate of input channel

Looks back the window size on each new sample

Calculates statistic for this „look back"window

ARRAY MATH STATISTICS

Arrays can be assigned to Statistics

Output is always a new array channel with same dimensions

CREATING IIR-FILTERS

(1)

Select one or several channels to be filtered by checking their check boxes and press the + button
(2) Select Filters, choose the proper one and its settings
(3) Press Add afterwards to create these channels
(4) A separate output channel for each filtered reference channel is created
(5) Changes can still be applied by entering the settings of the desired channel via the Gear button

CREATING FIR-FILTERS

(1)

Select one or several channels to be filtered by checking their check boxes and press the + button
(2) Select Filters, choose the proper one and its settings
(3) Press Add afterwards to create these channels
(4) A separate output channel for each filtered reference channel is created
(5) Changes can still be applied by entering the settings of the desired channel via the Gear button

Additional channels can be added or deselected

FILTER SETTINGS

Available Filters:

> Lowpass
> Highpass
> Bandpass
> Bandstop
> Integrator (Single or Double)
> Differentiator (Single or Double)

Lowpass \& Highpass:

DEWETRON

$>f_{C \text { max }}=\frac{f_{S}}{2}-50 \mathrm{~Hz}$
$>$ Bessel or Butterworth characteristic
$>\quad 2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}$ or $10^{\text {th }}$ order
$>$ Bandpass \& Bandstop
$>f_{l}=0 \ldots f_{h}-1 \mathrm{~Hz}$
$>f_{h}=f_{l}+1 \mathrm{~Hz} \ldots \frac{f_{s}}{2}-50 \mathrm{~Hz}$
$>$ Bessel or Butterworth characteristic
$>\quad 2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}$ or $10^{\text {th }}$ order
Integrator \& Differentiator
$>$ Single or Double Integration/Differentiation
$>$ Enable low (Integrator) or high (Differentiator) frequency component filtering
$>f_{C \text { max }}=\frac{f_{S}}{2}-50 \mathrm{~Hz}$
$>$ Bessel or Butterworth characteristic
$>\quad 2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}$ or $10^{\text {th }}$ order
Why filter frequency components during Integration / Differentation or not?
\rightarrow Integration of a velocity:
> With filtering enabled (no DC components), this calculation determines only the distance travelled from one data sample to the next one
With filtering disabled (DC components included), this calculation determines the entire travelled distance as the determined distance from one data sample to the next is summed up

OFFLINE MATH - ADDING CALCULATIONS TO THE DATA FILE

Basic and Advanced Math can be created offline
(2) Offline created channels are marked with a green Stored button

Any changes to a data file can be stored with the Store button

DEWETRON

Remarks:

(3)
> Possibility to edit settings of software channels in *.dmd-files. Function must be activated once after opening *.dmd-file (4) $++\quad-$
> All existing channels and calculations created with + button can be edited if source channels are stored
> It is also possible to edit the settings of hardware channels, but only the name and the unit.
> Please keep in mind that the results of an offline calculated channel can differ from an online calculated channel, i.e. filters as they are oscillating at the beginning

