

OXYGEN R7.6

SOFTWARE MANUAL

Copyright © DEWETRON GmbH

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

All trademarks and registered trademarks are acknowledged to be the property of their owners.

CONTENTS

1	Prefa	ce		3
2	Instal	ling OXY	GEN	5
3	Softw 3.1	are over	view ne tour	11 11
	3.2		ement screen	12
	5.2	3.2.1	Overview bar	14
		3.2.2	Measurement display area	14
		3.2.2	Action bar	15
		3.2.3	Menu functions	18
	3.3		g with OXYGEN software	19
	5.5	3.3.1	Online vs. Offline Data Processing	19
		3.3.2	Saving a Measurement Setup file	20
		3.3.3	Loading a Measurement Setup File	20
		3.3.4	Reviewing a Data File (PLAY mode)	21
		3.3.5	•	25 26
		3.3.6	Custom ordering of menu locations	20
				27
		3.3.7	OXYGEN viewer	27
4	Hardv	vare setu	qu	29
	4.1	Using TF	RION hardware with OXYGEN	29
	4.2	Using TF	RION3-AOUT-8 in OXYGEN	30
		4.2.1	Monitor Output	32
		4.2.2	Math Output	33
		4.2.3	Constant Output	34
		4.2.4	Function Generator	34
		4.2.5	Custom Waveform Store	35
		4.2.6	Stream Output / File Replay	36
		4.2.7	Channel SUM Mode	40
	4.3	Using TF	RIONet in OXYGEN	40
	4.4	0	PAD2 with OXYGEN	41
		4.4.1	Using EPAD2 with OXYGEN on a DEWE or DEWE2 system	41
		4.4.2	Using EPADS with OXYGEN via EPAD2-USB module	45
		4.4.3	Troubleshooting	45
		4.4.4	EPAD channel list	46
	4.5		Rs / CPADs with OXYGEN	47
	4.6		AQP/HSI Modules with OXYGEN	51
		4.6.1	Connecting DAQP/HSI Modules via an ORION Card to the Measurement System	51

		4.6.2	Connecting DAQP/HSI modules via a TRION-1802/1600-dLV board	52
		4.6.3	Programming the modules addresses	54
	4.7	CAN-FD 8	& FlexRay	56
		4.7.1	CAN-FD via NEXDAQ	56
		4.7.2	CAN-FD & Flexray in OXYGEN via Vectorbox	58
		4.7.3	Channel Setup for CAN-FD channels	60
		4.7.4	Channel Setup for FlexRay channels	69
5		surement s	•	73
	5.1		s in PLAY mode	75
			Analysis Files	75
			File History	76
	5.2	0		76
			Multi-File	76
			Header data	87
			Nodes	91
	F 2		Sync Setup	92
	5.3	Security		101
6	OXYG	EN setup		103
Ŭ	6.1			103
	0.1			103
			5	106
				107
	6.2		-	108
				108
				109
				109
	6.3	Remote o	control	115
		6.3.1	SCPI over Ethernet	115
		6.3.2	XCP over Ethernet	116
		6.3.3	Usage SCPI and XCP simultaneously	118
	6.4	Streamin	g interfaces	118
		6.4.1	EtherCAT slave	118
		6.4.2	Data stream plugin	118
		6.4.3		119
	6.5	Remote o	0	120
	6.6	User inte		121
				121
				122
	_		5 1	123
	6.7			124
				124
			5	124
			5	125
				126
	6.0			126
	6.8	Snutdow	n	127
7	Data	channels i	menu	129
-	7.1			129
	7.2			133
		un	0	-00

		7.2.1	Selecting multiple channels
		7.2.2	Channel List filtering options
	7.3		g the channel settings
	1.5	7.3.1	Changing the channel settings in the Data Channel menu
		7.3.2	Changing the channel settings in the channel setup
		7.3.3	Current measurement using TRION modules
	7.4		natical channels
		7.4.1	Basic math
		7.4.2	Filters
		7.4.3	Advanced math
		7.4.4	Optional calculations
		7.4.5	Protocols
		7.4.6	Data input
	7.5	Offline r	nath
	7.6	Counter	Channels in OXYGEN
		7.6.1	Counter Modes
		7.6.2	TRION Counter Overview
		7.6.3	Channel List of Counter Channels
		7.6.4	Channel Setup of a Counter Channel
		7.6.5	
			6
		7.6.6	Supported Counter Sensors 291
	7.7		ut Channels
		7.7.1	CAN port configuration
		7.7.2	CAN data recording
		7.7.3	SAE J1939 DATA DECODING
		7.7.4	CAN-OUT - transmitting OXYGEN data via CAN
	7.8		nnels
	7.9		pport
		7.9.1	Use in OXYGEN
		7.9.2	Loading a setup
8	Instru	imonto o	nd instrument properties 317
0	8.1		
		-	6
	8.2	-	meter
	8.3	0	neter
	8.4		ar
		8.4.1	Instrument properties
		8.4.2	Labels
		8.4.3	Linking the time axis of several recorders
		8.4.4	Additional properties 326
		8.4.5	DejaView [™]
	8.5	Chart Re	ecorder
	8.6	Bar Met	er
	8.7	Indicato	r
	8.8	Table in	strument
	8.9	Image ir	nstrument
	8.10	Text inst	rument
	8.11	Scope .	
	8.12		m analyzer
		8.12.1	Assignment of Frequency Domain Channels
		8.12.2	Frequency Axis Settings

		8.12.3	Assignment of Time Domain Channels		•		•	350
		8.12.4	Assignment of Frequency Domain Channels					350
		8.12.5	FFT properties for Time Domain Channels					351
		8.12.6	Markers					362
		8.12.7	Usage Of Harmonics Cursors					362
		8.12.8	Reference Curves for the Spectrum Analyzer					363
		8.12.9	Cross hairs			•		368
		8.12.10	Additional information for the spectrum analyzer properties				•	369
		8.12.11	FFT for recorder region	· •	•	•	•	384
	8.13	Video in	nstrument		•	•		385
	8.14	XY plot		•		•		388
	8.15	GPS plot	t	•		•		390
	8.16	GPS qua	ality	•		•		393
	8.17	Spectro	gram	•		•		396
	8.18	Power G	Group	•		•		397
	8.19	Intensity	y Diagram			•		398
	8.20	3D plot				•		399
	8.21	Array Ch	nart					401
	8.22	Output	Channel					403
	8.23	Audio P	layer					404
	8.24	Change	settings of multiple instruments					405
	8.25	Saturati	on visualization					406
	8.26	Saturati	on meter					407
	8.27	Control	instrument					409
		8.27.1	Control type: Shunt					410
		8.27.2	Control type: Bridge balance					410
		8.27.3	Control type: Saturation data					411
	8.28	Orbit plo	ot					411
	8.29	Polar plo	ot					416
	8.30	Nyquist	Plot (SDOF circle fit)					417
_								
9		ered Ever						419
	9.1	-	a Trigger Event					422
			an Event Condition					422
	9.3		an Event action					425
		9.3.1	Record action					426
		9.3.2	Digital Out action					427
		9.3.3	Alarm action					428
		9.3.4	Marker Action					429
		9.3.5	Snapshot Action					430
		9.3.6	Activate Trigger action					431
	9.4	-	the Trigger					431
	9.5		tion Examples					432
		9.5.1	Event Based Waveform Recording triggered by an input channel .					432
		9.5.2	Time Triggered Data Recording					435
		9.5.3	Data Query using the Snapshot Action					436
	9.6		ed Storing Modes					438
		9.6.1	Waveform Mode					439
		9.6.2	Statistics Mode					440
		9.6.3	Statistics Window					440
		9.6.4	Example			•		441

11	Expor	t Setting	35	447
	11.1		active recorder region or between cursors	448
	11.2	Export t	triggered data file with trigger aligned to zero	449
	11.3	Export v	with reduced sample rate	450
	11.4	Export (Options for a *.csv-file	450
	11.5	Export (Options for a *.txt-file	452
	11.6	Export of	options for a *.mdf4-file	453
	11.7	Export of	options for a *.mat-file	453
	11.8		options for an *.xlsx-file (Excel)	454
	11.9			455
	11.10			455
			Options for a *.dat-file (DIADEM)	455
			Options for a *.nt-file (DynaWorks)	456
				456
			Options for a *.uff-file	456
				457
				457
				458
				458
			•	459
	11.20	Automa	atic Data Export After Measurement End	463
12	Data	navigatio	an	465
				465
				467
	12.2		g channels in recorded files	470
	12.5	Deleting		470
13	Scree	ns menu	I	471
	13.1	Screens	overview	471
			the screen as video	473
		0		_
14	Repor	ting too	l l	475
	14.1	Creating	g a Report	475
	14.2	Reporti	ng cursor	479
	14.3	Menu d	lescription	480
15	OXYG	EN-NET		483
	15.1	OXYGEN	N-NET topologies	484
		15.1.1	Network topologies	484
		15.1.2	Synchronization topologies	487
		15.1.3	OXYGEN-NET topology including TRIONet3	489
	15.2	OXYGEN	N-NET - Menu overview	489
		15.2.1	OXYGEN-NET Menu – <i>Nodes</i>	489
		15.2.2	OXYGEN-NET Menu – <i>Sync</i>	491
		15.2.3	OXYGEN-NET Menu – Settings	492
	15.3		up an OXYGEN-NET System	493
		15.3.1	Generic setup	493
		15.3.2		494
	15.4		eneration on an OXYGEN-NET system	495
		15.4.1		495

443

	15.4.2	Data transfer and storage	497
	15.4.3	Save & load setup	498
15.5	Recordi	ng data with an OXYGEN-NET system	499
15.6	Additio	nal Information	500
15.7	Trouble	shooting	500
	15.7.1	General troubleshooting	500
	15.7.2	Multi-Master-specific troubleshooting	503
15.8	Limitati	ons of OXYGEN-NET	503

Software Feature Manual

CHAPTER

PREFACE

The information contained in this document is subject to change without notice.

DEWETRON GmbH (DEWETRON) shall not be liable for any errors contained in this document. DEWETRON MAKES NO WARRANTIES OF ANY KIND ABOUT THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED. DEWETRON SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DEWETRON shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory, in connection with the furnishing of this document or the use of the information in this document.

Technical Support

Please contact your local authorized DEWETRON representative first for any support and service questions.

For Europe and Asia, please contact:

DEWETRON GmbH

Parkring 4, 8074 Grambach AUSTRIA Tel.:+43 316 3070-555 Fax: +43 316 3070-90 Email: support@dewetron.com Web: http://www.dewetron.com The telephone hotline is available Monday to Friday between 08:00 and 17:00 CET (GMT +1:00)

For America, please contact:

DEWETRON, Inc.

2850 South County Trail East Greenwich, RI 02818 USA Tel.: +1 401 398 7963 Fax: +1 401 284 3755 Email: us.support@dewetron.com Web: http://www.dewetron.com

The telephone hotline is available Monday to Friday between 08:00 and 17:00 GST (GMT -5:00)

Restricted Rights Legend: Use Austrian law for duplication or disclosure.

DEWETRON GmbH Parkring 4 8074 Grambach AUSTRIA

Please find further information at https://www.dewetron.com.

CHAPTER

INSTALLING OXYGEN

To install OXYGEN on your measurement PC, launch the installer *DEWETRON_OXY-GEN_Setup_Rx.x_x64.exe* which can be found in the folder *\files\software\OXYGEN\Software* of the *Install Media* USB stick which is delivered with the measurement system and follow the installation instructions:

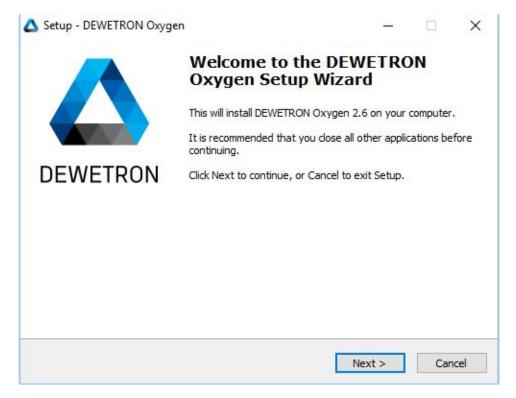


Fig. 2.1: Starting the installation wizard

Setup - DEWETRON Oxygen		-	
Select Destination Location			
Where should DEWETRON Oxygen be insta	alled?		Ċ
Setup will install DEWETRON Oxyg	gen into the follow	ing folder.	
To continue, click Next. If you would like to	select a different	folder, click	Browse.
C:\Program Files\DEWETRON\Oxygen			Browse
At least 207.8 MB of free disk space is requ	uired.		
At least 207.8 MB of free disk space is requ	uired.		

Fig. 2.2: Select destination location

🛆 Setup - DEWETRON Oxygen			×
Select Oxygen Edition Which edition of Oxygen should be installed?		¢	
Please select the Oxygen edition you want to install. Click Next continue.	t when you ar	e ready t	o
Oxygen Desktop		~	
< Back	Next >	Car	ncel

Fig. 2.3: Select OXYGEN edition

etup - DEWETRON Oxygen		
Where should Setup place the program's shortcuts?		6
Setup will create the program's shortcuts in the fo	ollowing Start Menu fo	lder.
To continue, click Next. If you would like to select a different	nt folder, click Browse	e.
DEWETRON	Brows	1
RON	Brows	e
DEWETRON	Brows	e
DEWETRON	Brows	e
DEWEIRON	Brows	e
DEWETRON	Brows	e

Fig. 2.4: Select start menu folder

Setup - DEWETRON Oxygen		-		×
Ready to Install				
Setup is now ready to begin installing DEWE	ETRON Oxygen on y	our computer	. (
Click Install to continue with the installation, change any settings.	, or click Back if you	want to revie	w <mark>o</mark> r	
Destination location: C:\Program Files\DEWETRON\Oxygen	l.		^	
Setup type: Oxygen Desktop				
Selected components: Install Oxygen Application				
Start Menu folder: DEWETRON				
<			>	
	< Back	Install	Can	icel

Fig. 2.5: Ready to install

🛆 Setup - DEWETRON Oxyge	en	_	□ ×
Installing			
	stalls DEWETRON Oxygen on your	computer.	
Extracting files C:\Program Files\DEWETF	RON\Oxygen\bin\lib\gstreamer-1.0\	libgstmatroska	.dli
			Cancel
	Fig. 2.6: Installing		
The Assessment of the Assessment of the			
Setup - DEWETRON Oxygo	en		
	Completing the DI	WETRO	N
	Oxygen Setup Wiz		
	Setup has finished installing DEW computer. The application may b installed icons.	ETRON Oxyge	en on your selecting the
DEWETDON	Click Finish to exit Setup.		
DEWETRON			
			КП
		Finish	

Fig. 2.7: Installation completed

After starting OXYGEN the first time, the software will be started in *Evaluation Mode*.

In *Evaluation Mode*, all features and options are activated to test the capabilities of the software. The recording time is limited to 30 seconds in *Evaluation Mode*. In addition, OXYGEN data files can be loaded

if the software is started in *Evaluation Mode*. For data review, analysis and post-processing no software license is required.

A software license is only required for data recording.

The license can be updated under the System Information tab (see Fig. 2.8). This requires a .lic file provided by DEWETRON.

You can find the license on your *Install Media* USB stick in the folder *files\software\OXYGEN*.

A license update requires a restart of OXYGEN.

🛆 Ox	kygen			
ø			System In	formation
	RECORDING			
≣	Filename: -			
0	File size: -			
=	Start time: -			
	Timezone: -			
Ŧ	Duration: -			
-	LICENSE			
r	Creation date:	2018-06-21		
	Licensee:	DEWETRON - David Petanjek		
نا	Serial number:	: Notebook		
-Fa	Product:	Oxygen 3.x		
	Features:	General Test and Measurement		
		Oxygen NET Advanced Power Analysis		
2		ADMA Multi (20)		
(i)		Bird's Eye Multi (20)		
		Remote Control: XCP		
		Remote Control: Calibration		
		Update	Remove	

Fig. 2.8: Updating the OXYGEN license

Note: I	Information	Note that a	license	file for	OXYGEN 6.x is	not valid for	OXYGEN 7.x.
---------	-------------	-------------	---------	----------	---------------	---------------	-------------

After installing a license, the license information can be found in the *System Information* menu (see Fig. 2.9).

LICENSE
Creation date:
Licensee:
Serial number:
Product:
Features:
Update Remove
VERSION
DEWETRON Oxygen
Build date:
Revision:
Hash:
Show 3rd party software licenses

Fig. 2.9: System information menu

CHAPTER

THREE

SOFTWARE OVERVIEW

3.1 Welcome tour

After the software has been started, a "Welcome Tour" will automatically begin to guide you through the basic functionalities of OXYGEN. For this purpose, a window appears at the beginning (see (1) in Fig. 3.1).

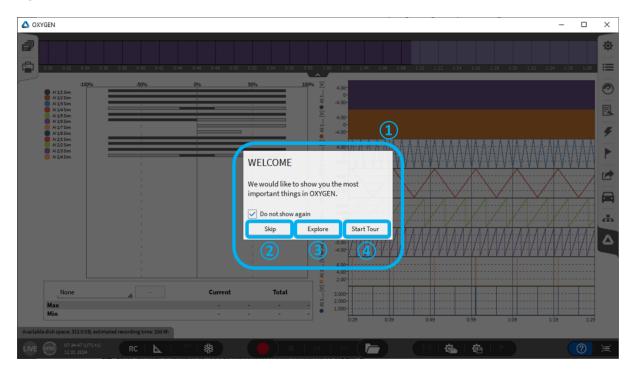


Fig. 3.1: Welcome

You have the following options for the introduction to OXYGEN:

- "Skip" (see 2) in Fig. 3.1): Skip the introduction to OXYGEN.
- "Explore" (see ③ in Fig. 3.1): The introduction is started. Now all available icons and buttons on the measurement screen are outlined in red. If you navigate with the mouse cursor over a bordered area, a short descriptive text about the function is displayed. Click on "x" (see ② in Fig. 3.2) to quit the introduction.

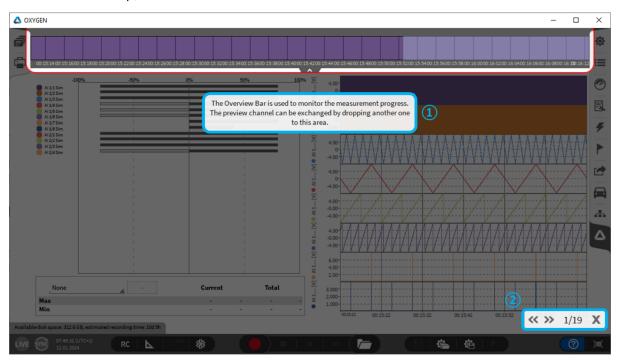


Fig. 3.2: Welcome tour description

"Start tour" (see (4) in Fig. 3.1): Let yourself be guided through the various basic functions of OXYGEN. By clicking on "<<" or ">>" (see (1) in Fig. 3.3) it is possible to jump through the individual icons, buttons and displays, the descriptions are automatically displayed for the respective area. By clicking on "x" (see (1) in Fig. 3.3) you can quit the introduction.

Min Available disk space: 312.6 GB, estimated recording time: 10d 5h	•	• •	•	00:15:12 00:15:22	00:15:32	00:15:42	[∞] 1 ≪ » 1/19	X
LIVE SYNC 07:49:31 (UTC+1) RC L	*					ŵ)=:

3.2 Measurement screen

After starting the software, the following screen will appear. OXYGEN will instantly start to acquire data but will not store it yet.

To activate the default measurement screen when OXYGEN will be started, the corresponding startup setting must be checked (see Fig. 3.4). This setting is activated per default, when starting OXYGEN the first time.

The saturation meter (*Saturation meter*) as well as a chart recorder instrument (see *Recorder*), displaying the first 8 analogue input channels, is part of the OXYGEN default measurement screen (see Fig. 3.5).

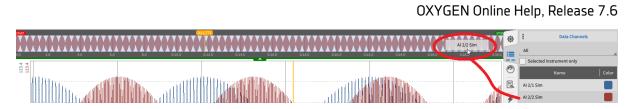
©	Oxygen Setup	Startup Settings
	Storing & Filename	ST TUP BEHAVIOUR
	Startup Settings	O Default
	Advanced Settings	
4	Hardware	C Empty setup
	DAQ Hardware	Last setup
	Amplifier / RS232 / RS485	O Load setup file
-	Sensors	email_sender_test.dms Browse
	Remote Control	
	Remote Control	
	User Interface	
\sim	Localization	

Fig. 3.4: Settings to activate automatic visualization of default measurement screen

Fig. 3.5: Software Overview

Fig. 3.5: Software overview

No.	Name	No.	Name
A - Overview bar		C - Me	nu functions
-	Overview bar	15	Save setup file button
B - Me	easurement display	16	Add Marker button
-	Measurement display area	17	Welcome tour button
C - Me	enu functions	18	Toggle button
1	Mode indicator	D - Act	tion bar
2	Sync mode indicator	19	Screens menu
3	Time	20	Reporting menu
4	Lock Screen button	21	Measurement settings menu
5	Design mode button	22	Data Channels menu
6	Data Labels button	23	Instruments menu
7	Freeze button	24	Instrument properties menu
8	Record button	25	Triggered Events menu
9	Stop button	26	Event List menu
10	Reverse button	27	Export Settings menu
11	Fast forward button	28	OXYGEN-NET menu
12	Open data file button	29	Bird's eye
13	Store data button	30	OXYGEN setup
14	Open Setup file button		


Table 3.1: Software overview

3.2.1 Overview bar

Fig. 3.6: Overview bar

The *Overview bar* gives a rough overview about the measurement data. It displays the time dependent trend of one selected data channel. During the data review and analysis, the orange box shows the position of the currently displayed data in the measurement file (see Fig. 3.19). The user can change the displayed channel. Therefor he must open the *Data Channels* Menu and move the desired channel via drag and drop to the *Overview bar* (see Fig. 3.6).

Fig. 3.7: Change displayed channel in the Overview bar

Shows the time dependent trend of one selected input channel.

3.2.2 Measurement display area

Default measurement screen header with several instruments that display the acquired data.

- For adding or changing instruments on a screen, refer to Adding an instrument to the measurement screen and channel assignment.
- For managing several screens, refer to *Screens menu*.

3.2.3 Action bar

Contains relevant push buttons.

Record button

Starts or pauses *REC* mode.

Stop button

Terminates an active recording or returns to then *LIVE* mode when the *PLAY* mode is active.

Reverse button

Only active in *PLAY* mode; A click on this button will move the cursor 5 seconds back.

Fast forward button

Only active in *PLAY* mode; A click on this button will move the cursor 5 seconds forward.

Open data file button

Opens a UI to select a data file and switches in the *PLAY* mode.

Store data button

Stores changes to a data file that were made during analysis in the *PLAY* mode, whereas the file will be overwritten. To save the measurement file under a new name with the changes made, open the small *Measurement Settings* menu and click on *Save DMD as...*.

\$		Measurement Settings
	RECORDIN	G
	Filename:	CANmod_gps_test.dmd
0	File size:	12533 KB
	Start time:	2022-03-03 16:41:46.752
5	Timezone:	Europe/Vienna UTC+1:00
4	Duration:	000 d 00:08:16.695
` ►	Save a	ctive recorder region
	HEADER DA	TA 🔅
∆ ¹	No custom	header data fields defined.

Fig. 3.8: Save DMD as...

Open Setup file button

Opens a UI to select a setup file, for more information refer to *Loading a Measurement Setup File*.

Save setup file button

Saves software settings to a setup file, for more information refer to *Saving a Measurement Setup file*.

Add Marker button

Adds a marker on the actual point of time; Enabled in REC and PLAY mode.

Lock Screen button

Locks the measurement screen.

Design mode button

Activates the *Design* mode to manipulate the surface of the measurement screens and add, delete or change the Instruments on the screen. For detailed information refer to *Adding an instrument to the measurement screen and channel assignment*. With the middle mouse button, the Design Mode can be toggled.

Data Labels button

Activates measurement labels; for detailed information refer to Mouse-over information.

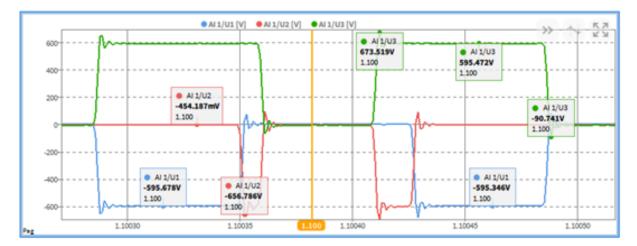


Fig. 3.9: Activate labels

Freeze button

Freezes the actual screen.

Mode indicator

Shows the current software indicator mode. OXYGEN has three different Operating Modes: *LIVE, REC* and *PLAY*. The actual software mode is displayed in the Action bar (see (1) in Fig. 3.5). The properties of the different modes are explained in the following section:

• *LIVE* mode: OXYGEN is only acquiring and displaying data but not storing it to a data file yet. This mode is active when OXYGEN is started, a measurement is stopped or when a data file is closed.

- *REC* mode: OXYGEN is acquiring data and storing it to a data file. A red line above the Action bar indicates this mode. OXYGEN stores the data automatically to a data file. An explicit command for storing the acquired data to a file is not necessary. For changing the data storing settings, refer to *General settings*.
- *PLAY* mode: Mode for reviewing, analyzing and exporting data. This mode is activated after a data file was loaded. A green line above the Action bar indicates this mode.

Sync mode indicator

Shows the current Sync status of the software.

Time

Shows the actual time, time zone and date; can be displayed on the measurement screen via drag'n'drop, for more details see *Text instrument*.

Toggle button

Quick access to Data channels menu; toggles between the current screen and the data Channel list

3.2.4 Menu functions

Measurement settings menu

Opens the System Settings menu; for detailed information refer to *Measurement settings*.

Data Channels menu

Opens the Data Channels menu; for detailed information refer to Data channels menu.

Instruments menu

Opens the Instruments menu for detailed information refer to Instruments and instrument properties.

Instrument properties menu

Opens the properties of a ||| selected Instrument; for detailed information refer to *Instruments and instrument properties*. The Instrument Properties can also be opened with a double click on the desired instrument.

Triggered Events menu

Opens the Triggered Events menu; for detailed information refer to Triggered Events.

Event List menu

Opens the Event List menu; for detailed information refer to Event List.

Export Settings menu

Opens the *Export Settings* menu; for detailed information refer to *Export Settings*.

OXYGEN-NET menu

Opens the OXYGEN-NET menu; for detailed information refer to OXYGEN-NET.

OXYGEN setup

Opens the System Information that contains information about the software license and version.

Screens menu

Opens the Screens menu; for detailed information refer to Screens menu.

Reporting menu

Opens the *Reporting* menu; for detailed information refer to *Reporting tool*.

3.3 Working with OXYGEN software

3.3.1 Online vs. Offline Data Processing

This chapter explains the difference between online and offline data processing. As explained in *Action bar*, there are three different operating modes: LIVE, REC and PLAY mode.

All the data processing, which is done and configured in the LIVE mode is called online data processing. OXYGEN is acquiring data, formula channels etc. can be created and will be saved in the setup, but no data has yet been recorded. These channels cannot be deleted in the post-processing.

All the data processing, which is done after a recording in the post-processing is called offline data processing. When reviewing a measurement file OXYGEN is opened in PLAY mode. That is the mode for reviewing, analyzing, and exporting data. These channels can be deleted until the file is closed the first until upon creating the channels. The channels will not be saved in the setup, unless a new setup file is created from the measurement file (see (5) in Fig. 3.18).

The difference for an online and offline created channel, can also be seen in the different colored Stored indicator in the channel list. This indicator is red for online created channels and green for offline created

channels. As seen in Fig. 3.10, both statistics channels were created before the recording was started, therefore in the LIVE mode of OXYGEN. The two formula channels were created after the recording, when the file was opened again in OXYGEN.

Fig. 3.10: Different colored stored indicator for online and offline created channels

3.3.2 Saving a Measurement Setup file

2 006 008 013 012 014 016	0:18 0:20 0:22 0:24 0:26	0.28 0.30 0.32 0.34 0.36 0.38	0.40 0.42 0.44 0.46 0.4	48 0.50 0.52 0.54	• 0.56 0.58 1.00 1.02 1.04 📰
10		Al 1/1 Sim [V] Al 1/2 Sim [V] Al 1/3 Sim [V] Al 1/4	Sim [V]		
Al 2/11 Sim (V) AVG	Save Measurement Config Data Folder > CrDATA System > CrDATA > CrDATA > CrDATA V/	C/ _Data Name ▲ last.dms m_20200129_215524 Diete File name_devertion_setup_20200313_064713 File type_*_dms	<u>і size</u> 1953 кв Сапсеі Сапсеі		
Available disk space: 260.9 GB, estimated recording time: 6d Sh LIVE SVNC 08:47:25 (UTC+1) 13.03.2020					

Fig. 3.11: : Different colored stored indicator for online and offline created channels

In order to save a measurement setup file proceed as follows:

- 1. Touch or left click the gear and diskette icon in the Action Bar (see Fig. 3.11 or (15) in Fig. 3.5)
- 2. Upon selecting this icon, the Save Measurement Config dialog will appear
- 3. Within this dialog select the *Data* folder, create a *New folder* or click on the *Browse* button to open the Windows Explorer dialog and select a location

4. Define a *file Name* and by clicking on the *Save* button the current software settings will be stored to a setup file

001810 001812 001814 001816 001818 001820	00.18.22 00.18.24 00.18.26 00.18.28 00.18.30	001832 001834 001836 001838 001840 001842 00	18-44 00:18-46 00:18-50 00:18-5	52 00:18:54 00:18:56 00:18:58	<u>00.19:00 00</u> .19:02 00.19:04 00.19:06 00:19:08	÷
101		Al 1/1 Sim [V] Al 1/2 Sim [V] Al 1/3 Sim [V] Al 1/4 Sim [V]				0
8						
6	Load Measurement Config	Δ.				1
4-	Data Folder	C:/ _Data				
2-	> C:/DATA	Name	Size	Date		
•-	System	🛆 last.dms		2020-03-13 08:33		
-2-	> V:/	m_20200129_213524		2020-03-13 08:44		æ
4-						
*						(i)
*						
-10				:07.6	00:19:08.6 00:19:0	9.6
AI 2/I1 Sim [V] AVG		Delete		New folder 1/1	Sim [V] AVG	
		Info Channels Headers				
		Oxygen Version: 5.0.2011				
-2 2		Used Plugins: DEWETRON TRION EncoderModule FormulaModule			0 5 10	
-4		FormulaModule SampleUnitConverter TEDSChainElement		VI -	ACT	
		EDJUIdillExment				
-6						
-				ie 000	Al 1/1 Sim [V] -7.43821069229905	
F -8	Browse	11	Cancel	000 Open 000	-7.238614990628659 -7.010451973107575	
	7 5			000	-6.754622862018517 -6.472134975918232	
√-10	10 / -10	10 / - /	257.98	00:19:09.5964000	-6.1641053059163875	
Available disk space: 260.6 GB, estimated recording time: 6d 9h						
LIVE 500 09.05:29 (UTC+1) 13.03.2020	∂ ⊾ ∧ *			8 🛸 🏟		E

3.3.3 Loading a Measurement Setup File

Fig. 3.12: Loading a Setup file

- 1. Touch or left click the gear and folder icon along the bottom tool bar (see Fig. 3.12 (4) in Fig. 3.5)
- 2. Upon selecting this icon, a Load Measurement Config dialog will appear
- 3. Within this dialog, the user can select the Measurement Setup he would like to open. *Info, Channels* and *Headers* contain additional information about the file to ease the search for the correct file.
- 4. By clicking on the *Browse* button, the Windows Explorer dialog will open to more easily browse another folder location
- 5. The Open button will open the selected Setup file
- 6. If the measurement hardware does not match with the hardware stored in the setup file, the *Hardware Match* dialog will open (see Fig. 3.13). Within this dialog, the user can rematch his connected hardware to the hardware stored in the setup file before opening it. Identical TRION modules will be matched automatically or use the *Auto* button (see Fig. 3.13). Clicking on *Clear* will delete the complete match that is done so far. After connecting all necessary channels, the user can click on *Apply* and the setup loading will be continued.

	Setup Cha	nnels		Auto	Clear		System	Channels	
~	Name	Mode	Sample Rate			~	Name	Mode	Sample Rat
DEWE2-A4				7		DE 🗹	WE2-A4		
TRION-240	02-V-4-B					AL C	ION-BASE		
TRION-162	O-ACC-6-BNC			7			ION-1620-ACC-6-BN	IC	
Al 2/1 Sin	n	Voltage	10000 Hz			_	Al 2/1 Sim	Voltage	10000 Hz
Al 2/2 Sin	n	Voltage	10000 Hz			_	Al 2/2 Sim	Voltage	10000 Hz
Al 2/3 Sin	n	Voltage	10000 Hz			_	Al 2/3 Sim	Voltage	10000 Hz
Al 2/4 Sin	n	Voltage	10000 Hz			_	Al 2/4 Sim	Voltage	10000 Hz
Al 2/5 Sin	n	Voltage	10000 Hz			_	Al 2/5 Sim	Voltage	10000 Hz
Al 2/6 Sin	n	Voltage	10000 Hz			-	Al 2/6 Sim	Voltage	10000 Hz
CNT 2/1 5	bim	Events	10000 Hz				CNT 2/1 Sim	Events	10000 Hz
TRION-240	2-MULTI-8-LOB					₹T K	ION-2400-dSTG-8-L	0B	
TRION-240	2-dACC-8-SMB					TF 🕑	ION-2402-MULTI-4-	D	
Al 4/1 Sin	n	Voltage	10000 Hz				Al 4/1 Sim	Voltage	10000 Hz
Al 4/2 Sin	n	Voltage	10000 Hz				Al 4/2 Sim	Voltage	10000 Hz
AI 4/3 Sin	n	Voltage	10000 Hz				Al 4/3 Sim	Voltage	10000 Hz
Al 4/4 Sin	n	Voltage	10000 Hz				Al 4/4 Sim	Voltage	10000 Hz
Al 4/5 Sin	n	Voltage	10000 Hz				CAN 4/1 Sim	Higeed	
Al 4/6 Sin	n	Voltage	10000 Hz		-	– ≥ Vi	deo Channels		
Al 4/7 Sin	n	Voltage	10000 Hz						
Al 4/8 Sin	n	Voltage	10000 Hz						
CNT 4/1 5	Sim	Events	10000 Hz		/				
CNT 4/2 5	òim	Events	10000 Hz	/					

Fig. 3.13: Hardware Mismatch dialog

The hardware *Mismatch dialog* can also be forced to show up, even if the actual hardware matches the hardware in the setup. This is possible by selecting the *Show channel mapping dialog*, when opening an OXYGEN Setup (see Fig. 3.14)

Data Folder	D:/ DATA			
> D:/DATA	Name	Size	1	Date
> stem	dewetron_setup_20220125_060834.dms	110.4 kB	203	12-01-25 08:08
> D:/	A dewetron_setup_20220207_154655.dms	223.6 kB	203	2-02-07 15:46
	A dewetron_setup_20220209_072855.dms	126.9 kB	203	12-02-09 07:28
> 🛫 ٧/	A dewetron_setup_20220209_103458.dms	215.4 kB	200	2-02-09 10:35
	A dewetron_setup_20220210_145300.dms	208.9 kB	200	2-02-10 14:53
	Delete			New folder
	Info Channels Headers			
	OXYGEN Version: 6.0.201 Used Plugins: Camera DEWETRON TRON Encoder Module SR0viderChainElement			
	TEDSChainElement			
Browse		Cano	el	Open

Fig. 3.14: Forced Hardware Mismatch dialog

3.3.4 Reviewing a Data File (PLAY mode)

tern • 100 C/DATA • 100 C/ • 200 V/ • 200 V/ • 200 V/	Image: Second	522048 522048 522048 31148 32448 32448 32448	Date 2024-07-29 10:25 2024-07-29 10:24 2024-07-29 10:23 2024-07-29 10:22 2024-07-29 10:21	
→ 📫 c:/ → 💉 V:/	Image: Constraint of the second sec	92.0k8 92.0k8 3.1M8 3.2M8 3.2M8	2024-07-29 10-25 2024-07-29 10-24 2024-07-29 10-23 2024-07-29 10-22	
♥ ♥:/	Im. 20240729_102418_295.dmd Im. 20240729_102418_295.dmd Im. 20240729_102214_293.dmd Im. 20240729_102212_293.dmd Im. 20240729_102214_293.dmd	92.0 kB 3.1 MB 3.2 MB 3.2 MB	2024-07-29 10:24 2024-07-29 10:23 2024-07-29 10:22	
♥ ♥:/	Image: mail of the second se	3.1 MB 3.2 MB 3.2 MB	2024-07-29 10:23 2024-07-29 10:22	
> ~~ v/ > ~~ z/	m_20240729_102221_293.dmd	3.2 MB 3.2 MB	2024-07-29 10:22	
Z./	m_20240729_102221_293.dmd	3.2 MB 3.2 MB	2024-07-29 10:22	
	m_20240729_102147_292.dmd	3.2 MB		
			2024-07-29 10:21	
	m_20240729_101922_291.dmd	1.4MP		
	m_20240129_101922_291.dmd		2024-07-29 10:19	
		1.4MD	2024-07-2910:19	
	m_20240729_101602_290.dmd	3.0 MB	2024-07-29 10:16	
	m_20240729_101244_289.dmd	3.0 MB	2024-07-29 10:12	
			N (11	i 📃
	Delete		New folder	j
	Info Chappels Headers			
	Recording Start: 2024-07-29 10:25:52 - Europe/Vienna UTC+2:00			1
	Duration: 000 d 00:00:03.010			· · · · · · · · · · · · · · · · · · ·
	Max. Samplerate: 10000 Hz			
	Multifile part: No			
				-
Browse Search Files	5	Cancel	Open	
	· · · · · · · · · · · · · · · · · · ·			
				m
	Browse Search File	Duration: 000400:00:03.010 Max Samplerate: 1000Hz Multifilepart: No	Info Channels Headers OXYGENVersion: 7.2.RC1 Recording Start: 2024/07/29.10.25.52 - Europe/Vienna UTC+2.00 Duration: 000 d0:00:03.010 Max. Samplerate: 1000 Hz Multifile part: No	Info Channels Headers OXYGEN Version: 7.2.RC1 Recording Start: 2024-07:29.10.25.52 - Europe/Vienna UTC+2:00 Duration: 000-00:00:0.010 Max. Samplerate: 1000Hz Multifile part: No

Fig. 3.15: Opening a Data File

- 1. Touch or left click the folder icon in the Action bar (see (1) Fig. 3.15 or (2) in Fig. 3.5)
- 2. Upon selecting this icon, an Open Data File dialog will appear.
- 3. Select the appropriate *Data Folder* on the left side of the menu.
- 4. Once the *Data Folder* is found, the Data file list will be populated with *.dmd Data files showing their name, size, and date of recording.
- 5. Within this dialog, the user can select the Data file he would like to open. *Info, Channels* and *Headers* contain additional information about the file to ease the search for the correct file.
- 6. By clicking on the *"Browse..."* button the Windows Explorer dialog will open to browse the right *Data Folder.*
- 7. The *"Search Files..."* button will open a dialog window enabling to filter the data files by AND, OR conditions. The conditions cannot be used sequentially. To switch from AND to OR, simply click on the AND (see Fig. 3.16).

Search Data File				
1 Search Folders Selected	Configure			
Header Value	+ Link	1 Name	Size	Date
step_size is40	-	C:/DATA/m_20240417_111913_118.dmd	14.5 MB	2024-04-17 11:19
	OR	C:/DATA/m_20240417_111627_117.dmd	15.4 MB	2024-04-17 11:16
Frequency is iquare_50_kHz_Sample_Rate		C:/DATA/m_20240417_111153_116.dmd	10.1 MB	2024-04-17 11:11
1_1_freq is _360	AND	C:/DATA/m_1200_Dreieck.dmd	8.9 MB	2024-01-08 14:33
1_1_AC_dis_freq is _1000	AND			
Alphase shift a is 5 a	AND			
	OR			
Name is 400_Drejeck				
rame A IS 400_Dreeck A				

Fig. 3.16: Search files filter options

8. The "Configure..." button enables to specify additional folders via to scan and whether subfolders are scanned for data files (see Fig. 3.17).

Fig. 3.17: Configure folder and optional subfolder to scan

- 9. The Open button will open the selected Setup file (see Fig. 3.15).
- 10. Along the top of the newly opened data file lies the *Overview Bar* (see Fig. 3.18 or 2 in Fig. 3.5). The *Overview Bar* displays the events that have taken place during this measurement. Such as: start, pause, resume, current playback time position, and termination of recording.
- 11. Once the user clicks the green *PLAY* button (see (1) Fig. 3.18) at the bottom of the screen the yellow playback position cursor will stream across the screen and the displays currently on the screen will then become active, displaying the data currently seen at that playback position.
- 12. The playback speed can be changed by clicking on the *Speed* button (see 2) Fig. 3.18 or Fig. 3.19). Select a speed from the shown buttons or enter an individual value in the field between 1000x to 1/1000x. Note: Audio replay only working with a playback speed of 1x (original speed).
- 13. Once finished reviewing the data file, save the file by clicking on the save button in the action bar or save the file with a new name by opening the small measurement settings menu and click on *Save DMD as*. Select then the *Eject* button (see ③ in Fig. 3.18) which is located to the right of the Speed button. If you do not want to save the data file, only click on the *Eject* button and select *Discard* in the pop-up window. After that OXYGEN will be in *LIVE* mode again and start to acquire data.

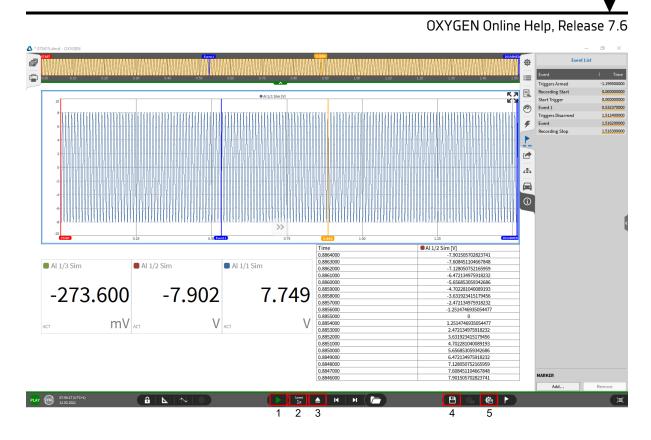


Fig. 3.18: Loaded Data File – Overview

Fig. 3.19: Changing the playback speed of a data file

Note:

- The *Design* mode can be activated to add, move or delete Instruments in the *PLAY* mode as well. For detailed information, refer to *Adding an instrument to the measurement screen and channel assignment*.
- A Recorder instrument is very useful during playback, because it also allows you to see all the different events that may have happened during a measurement
- The *Event List* menu (see Fig. 3.18) will clearly display all events and the points of time the events occurred in a list. For adding a marker to an event, refer to *Event List*.
- Changes that were applied to the data file during the analysis can be saved to the data file by pressing the diskette-button (see ④ in Fig. 3.18).
- A setup file based on the settings of a data file can be created by pressing the gear-diskette-button (see (5) in Fig. 3.18).

3.3.5 Custom ordering of menu locations

OXYGEN allows the user to customize his experience within the software. Users can re-order the menu selection panels on the opposing side bar. This allows the user to have multiple menus open at the same time. To change the order, the user can select the respective menu and must keep the mouse button pressed for one second. Then a blue background on the menu sign will appear. Now the user can move the menu to the desired position while keeping the button pressed. It is also possible to move a menu from the right sidebar to the left sidebar and vice versa.

Note:

- The user may find it difficult to place the menus back in the default order once a change has been made. To reset the position of your menus, head into *System Settings > UI Options* and select the *Reset* button found under the *Sidebar position* section (see 1) in Fig. 3.20).
- The user can also swap the right and the left sidebar. To do so, head again into System Settings > UI Options and select Left side under the Sidebar position (see 2) in Fig. 3.20).
- The user can also change the width of the menu sidebar.

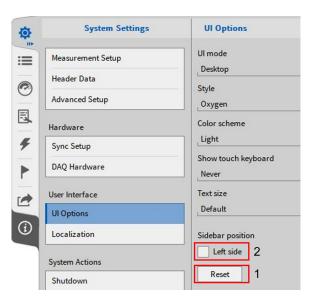


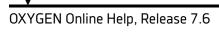
Fig. 3.20: Sidebar position reset

3.3.6 OXYGEN shortcuts

The following shortcuts can be helpful when using OXYGEN.

Shortcuts	Effect
Ctrl + Q	Close OXYGEN
Ctrl + O	Open recordings (data files)
Ctrl + A	Select all (Screens, Instruments)
Ctrl + S	Save measurement setup (*.dms) in LIVE Mode or store the currently opened datafile (*.dmd) in PLAY Mode
Ctrl + F	Toggle between channel list and last used screen
Ctrl + C	Copy instrument, channel settings
Ctrl + V	Paste from clipboard
F11	Enable fullscreeen mode

Table 3.2: OXYGEN sl	nortcuts
----------------------	----------


3.3.7 OXYGEN viewer

• It is possible to open OXYGEN multiple times to review and analyze data in the Viewer Mode. Datafiles can be opened directly from a folder, whenever OXYGEN is already running. This Viewer Mode is displayed on the splash screen with the addition "*Viewer*" when OXYGEN is starting, shown in Fig. 3.21.

Fig. 3.21: Splash Screen for the OXYGEN Viewer

- The core feature of recording data is only available with the main OXYGEN window, nonetheless, all other features like the post-processing features are also available in the Viewer Mode. Also, during recording this mode can be used to look at an already recorded datafile by opening it in the Viewer Mode.
- If a datafile is opened in Viewer Mode and ejected again (see 2) in Fig. 3.18), a notice appears above the Action Bar shown in Fig. 3.22. Another datafile can be opened to analyze and review.

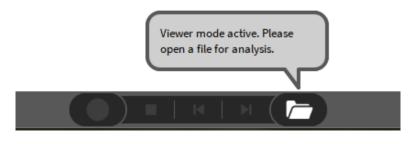


Fig. 3.22: OXYGEN Viewer notice

Note: Multiple OXYGEN Viewer windows can be opened at the same time.

CHAPTER

HARDWARE SETUP

The usage of different hardware types can be enabled and disabled in the *DAQ Hardware* setup which can be found in the *System Settings*. To access, the *System Settings* must be expanded to the full screen.

4.1 Using TRION hardware with OXYGEN

- Make sure that the driver for the TRION-hardware is installed. The installer is named *DEWETRON-TRION-Applications-x64.exe* and can be found in the folder *files\drivers\2_daqboards\dewetron\trion_driver\DEWETRON TRION Rx.x* of the *Install Media* USB stick which is delivered with the measurement system.
- If the driver was installed correctly, the *DEWE2 Explorer* will be available in Windows start menu.
- Go to the DAQ Hardware setup in the System Settings and make sure that the TRION Series is enabled (see Fig. 4.1). Changes take effect on application restart.

System Settings	DAQ Ha	rdware
Measurement Setup		
Header Data		ADMA
Advanced Setup		ALTA_DT
Hardware		CAMERA
Sync Setup		DAQP
DAQ Hardware		EPAD
Amplifier / RS232 / RS485		GIGECAMERA
Sensors		ORIONDAQ
Extensions and Plugins		ORIONDSA
Plugins Overview		
Remote Control		OXTS
		SIM
User Interface		TRION
UI Options		TRION
Localization		VECTOR
	Measurement Setup Header Data Advanced Setup Hardware Sync Setup DAQ Hardware Amplifier / RS232 / RS485 Sensors Extensions and Plugins Plugins Overview Remote Control User Interface UI Options	Measurement Setup Header Data Advanced Setup Hardware Sync Setup DAQ Hardware Amplifier / RS232 / RS485 Sensors Extensions and Plugins Plugins Overview Remote Control User Interface UI Options

Fig. 4.1: Enabling the TRION Series in the DAQ Hardware setup

• The channels of the connected TRION hardware will now be visible and editable in the Channel List (see Fig. 4.2):

Ö			TRI	DNet									
-	DEMO-AUS	STRIA		*****									
0						12 CF							
E,					CH1 CH2	CH 3 CH 4	CH15 CH16						
						00	00						
4	All	⊿ Searc	h		🍾 📑 CAN			«					
	~	a ∕	ctive :	Stored	Channel	Color Setu	p Scaled Value	Mode	Sample Rate	Range	1	Scaling	•
	×		Т	RIONet	t: DEMO-AUSTRIA								Dao
			т	RION-2	402-dACC-6-BNC								Advanced
					AI 1/1@DEMO-AUSTRIA AI 1/1@DEMO-AUSTRIA TRION-24CC-6-BNC	•	-100	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	Ì.,
					AI 1/2@DEMO-AUSTRIA AI 1/2@DEMO-AUSTRIA TRION-24CC-6-BNC		-100	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
i					AI 1/3@DEMO-AUSTRIA AI 1/3@DEMO-AUSTRIA TRION-24CC-6-BNC		-100	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
					AI 1/4@DEMO-AUSTRIA AI 1/4@DEMO-AUSTRIA TRION-24CC-6-BNC	e	-100	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
					AI 1/5@DEMO-AUSTRIA AI 1/5@DEMO-AUSTRIA TRION-24CC-6-BNC		-100	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	а.
				0	AI 1/6@DEMO-AUSTRIA AI 1/6@DEMO-AUSTRIA TRION-24CC-6-BNC	•	0.004658 A	VG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
			c	OUNTE	ER CNT 1/1@DEMO-AUSTRIA	©							
					CNT 1/1@DEMO-AUSTRIA CNT 1/1@AUSTRIA TRION-24CC-6-BNC	۰	-2147483548 2147483	/G Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:	
					Frequency_CEMO-AUSTRIA CNT 1/1AUSTRIA TRION-24CC-6-BNC	۵	0.001 80000	VG Frequency	10000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Offset: 0	Unit: Hz	
					Angle_CNT 1/DEMO-AUSTRIA CNT 1/1@lacement TRION-24CC-6-BNC	۵	D	/G Rotation	10000 Hz	0 ° 360 °	Scale: 1 Offset: 0	Unit: °	
				0	Speed_CNT 1EMO-AUSTRIA CNT 1/1@DVelocity TRION-24CC-8-BNC		0.000000 A	VG Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Offset: 0	Unit: rpm	
	⊻_		c	OUNTE	ER CNT 1/2@DEMO-AUSTRIA	٢							
					CNT 1/2@DEMO-AUSTRIA CNT 1/2@AUSTRIA TRION-24CC-6-BNC		-2147483548 2147483	/G Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:	
					Frequency_CEMO-AUSTRIA CNT 1/2AUSTRIA TRION-24CC-6-BNC	e	0.001 80000	VG Frequency	10000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Offset: 0	Unit: Hz	
				0	Angle_CNT 1/DEMO-AUSTRIA CNT 1/2@la cement TRION-24CC-6-BNC		þ	/G Rotation	10000 Hz	0 ° 360 °	Scale: 1 Offset: 0	Unit: °	
				0	Speed_CNT 1EMO-AUSTRIA CNT 1/2@DVelocity TRION-24CC-6-BNC	a	0.000000 A	VG Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Offset: 0	Unit: rpm	
			т	RION-2	402-MULTI-4-D								
				0	AI 2/1@DEMO-AUSTRIA AI 2/1@DEMO-AUSTRIA TRION-2402-MULTI-4-D		-10	VG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
					AI 2/2@DEMO-AUSTRIA AI 2/2@DEMO-AUSTRIA TRION-2402-MULTI-4-D	•	-10	VG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
					AI 2/3@DEMO-AUSTRIA AI 2/3@DEMO-AUSTRIA TRION-2402-MULTI-4-D		-10	VG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
					AI 2/4@DEMO-AUSTRIA AI 2/4@DEMO-AUSTRIA TRION-2402-MULTI-4-D		-10	VG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V	
					CAN 2/1@DEMO-AUSTRIA	e	used as analog	HighSpeed					

Fig. 4.2: Overview of connected TRION hardware in the Channel List

4.2 Using TRION3-AOUT-8 in OXYGEN

This section will explain the software functions for the TRION3-AOUT module in OXYGEN. In order to use these functionalities, the TRION3-AOUT in combination with a TRION3-18xx-MULTI module and OXYGEN 5.4 version or above are required. The configuration of the two modules can only be done at factory and cannot be changed by the user.

For a detailed explanation of the hardware functionalities refer to the TRION3-AOUT datasheet, which can be found on our website www.DEWETRON.com.

The TRION3-AOUT-8 module has two functions:

- Conditioned signal output
- Calculated channel output

Conditioned signal output

A direct or processed output of each conditioned analog input of the TRION3-18xx-MULTI is available here. This can be a \pm 5 V, \pm 10 V or 0-10 V analog signal as direct output or RMS or average value for the same ranges as processed output.

Calculated channel output

Any channel or the TRION3-18xx-MULTI can be used for basic calculations on the FPGA and output the result as a $\pm 5 V$, $\pm 10 V$ or 0-10 V analog signal.

These two functions are available through 4 different modes, which are available in OXYGEN:

- Monitor Output
- Math Output
- Constant Output
- Function Generator

The small gear button, seen in Fig. 4.3 opens the channel setting of each channel.

V TRION-AOUT-8			
AO 2/1 Sim	TRION-AOUT-8	¢	
AO 2/2 Sim	TRION-AOUT-8	¢	
AO 2/3 Sim	TRION-AOUT-8	¢	
AO 2/4 Sim	TRION-AOUT-8	¢	

Fig. 4.3: Opening the channel settings of the TRION3-AOUT module

The settings are divided in 3 sections seen in Fig. 4.4 output amplifier options, mode settings and scaling information.

AO 2/1 TRION-AOUT	SN:1234567890 8 AO 2/1 Sim				~	« » x
OUTPUT AMPL	FIER OPTIONS	MONITOR OUTPUT SE	TTINGS		SCALING INFORMATION	
Mode Range Output Mode	Monitor Output	Source Channel Output Value	Al 1/1 Sim	, 📰	INPUT Fullscale: 10 V -Fullscale: -10 V	OUTPUT 10 V -10 V
LP filter	LOff					

Fig. 4.4: Channel settings of the TRION3-AOUT module

In the output amplifier options the according *Mode* can be selected. Following, each Mode and the according settings will be explained.

Also, the *Range* of the output can be selected here, whereby ± 5 V, ± 10 V, 0-5 V, 0-10 V, ± 30 mA or 0-30 mA are available.

For the *Output Mode* two different options can be selected: High-Speed or High-Resolution. The following table will explain the differences between these two modes.

	High-speed mode	High-resolution mode
Update rate	2.5 MS/s	500 kS/s
Resolution	16-bit	32-bit
Latency	<5 µs	<100 µs

Table 4.1: Differences between High-speed and High-Resolution mode of TRION3-AOUT module

A lowpass filter can also be selected in this section with the cut-off frequency and the filter characteristic.

If the range of the TRION3-18xx-MULTI module exceeds the possible output range of the TRION3-AOUT module, the signal will be scaled accordingly. This scaling information can be seen in the Scaling Information section. An example of an exceeded range can be seen in the following Fig. 4.5.

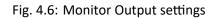

SCALING INFORMATION	
INPUT	OUTPUT
Fullscale: 30 V	10 V
-Fullscale: -30 V	-10 V

Fig. 4.5: Scaling information for an exceeded range

4.2.1 Monitor Output

Fig. 4.6 shows the available settings for the Monitor Output mode. This mode enables to monitor an input channel of the TRION3-18xx-MULTI module as different output values. The source channel can be selected by clicking on the button marked red in Fig. 4.6. Fig. 4.7 shows the dialog which opens to select the corresponding source channel. Only one channel can be selected.

MONITOR OUTPUT SETT	INGS	MONITOR OUTPUT SETTIN	NGS
Source Channel	Al 1/1 Sim	Source Channel	Al 1/1 Sim
Output Value	Actual	Output Value	Average
		Window Type	Moving
		Calculation Window	1000 ms_

		TRION/SourceChannel_A			
		Show selected channels only			
		Name Color			
		✓ LocalNode ✓ DEWE3-RM4			
		H	-	TRION3-1820-MULTI-8-LOB	
MONITOR OUTPUT SETTIN	IGS	П		Al 1/1 Sim	
Source Channel	Al 1/3 Sim			AI 1/2 Sim	
Output Value	RMS	Ш		Al 1/3 Sim	
Window Type	Moving	н		Al 1/4 Sim	
Calculation Window	1000 ms	Ш		Al 1/5 Sim	
		н		Al 1/6 Sim	
		Ш		Al 1/7 Sim	
		I		Al 1/8 Sim	
				Cancel	Ok

Fig. 4.7: Source channel selection for the Monitor Output Mode

It is possible to output the actual value or the average or RMS value of an input channel of the TRION3-18xx-MULTI module. If the average or RMS is selected, two additional settings are available as seen in Fig. 4.6 on the right side. The *Window Type* can be *Fixed* or *Moving* and for the *Calculation Window* a value can be chosen from the dropdown list or a value can be entered manually.

4.2.2 Math Output

Fig. 4.8 shows the settings for the Math Output mode. Again, two source channels can be selected by clicking on the button marked red in Fig. 4.8. The following three *Math Operations* are available for the two source channels:

- A + B
- A B
- A * B

MATH OUTPUT SETTINGS		MATH OUTPUT SETTINGS	
Source Channel A	Al 1/1 Sim	Source Channel A	Al 1/1 Sim
Source Channel B	Al 1/1 Sim	Source Channel B	Al 1/1 Sim
Math Operation	A+B	Math Operation	A+B
Output Value	Actual	Output Value	Average 🔬
		Window Type	Moving
		Calculation Window	1000 ms

Fig. 4.8: Math Output settings

It is possible to output the actual value of the operation result or the average or RMS value. If the average or RMS is selected, two additional settings are available as seen in Fig. 4.8 on the right side.

The *Window Type* can be *Fixed* or *Moving* and for the *Calculation Window* a value can be chosen from the dropdown list or a value can be entered manually.

4.2.3 Constant Output

Fig. 4.9 shows the setting for the Constant Output mode. The Source Channel cannot be selected, since for the constant output this is not necessary. Depending on the *Range*, which is selected in the *Output Amplifier Options* (see Fig. 4.4 a *Constant Value* can be entered, which lies within the range. The slider can be used to set a value, or it can be entered manually in the provided field.

CONSTANT VALUE OUT	PUT SETTINGS	
Source Channel A	CONSTO	
Constant Value		V

Fig. 4.9: Constant Output settings

4.2.4 Function Generator

As a last mode the Function Generator is available. The different settings can be seen in Fig. 4.10

- Waveform: sine, square or triangle waveform can be selected or an individual pattern, which can be defined in the *Custom Waveform Store* section (see Fig. 4.10). For a more detailed explanation see *Custom Waveform Store*.
- Frequency: the frequency can be selected from the dropdown list or an individual value can be entered between 0.001 Hz and 1 MHz.
- Amplitude: the amplitude can be between 0–10 V or 0–30 mA as peak or RMS value.
- Offset: an offset between ±10 V or ±30 mA can be defined.
- Phase: a phase between ±180° can be defined.
- Symmetry/Dutycycle: this option is only available for a triangle or square waveform and can be defined between 0.001–100 %.

FUNCTION GENERATOR OUT	IPUT SETTINGS	CUSTOM WAVEFORM STORE		
Waveform	Sine	Waveforms are shared per module.		
Frequency	1000 Hz			
Amplitude	1 V_	0 Click or drop waveform file here		
	Peak 🚽	1.0		
Offset	0 V_	1 Click or drop waveform file here		
Phase	0 deg_	-1.0		
Symmetry	0	1.0		
		2 Click or drop waveform file here		
		1.0		
		3 Click or drop waveform file here		

4.2.5 Custom Waveform Store

If a custom waveform wants to be used, Pattern 0-3 must be selected as *Waveform* in the *Function Generator Output* settings. In the section *Custom Waveform Store* 4 different waveforms can be defined accordingly. Only one waveform can be selected per channel. A custom waveform file can either be dragged and dropped to one of the provided fields or selected by clicking on the filed directly and a file dialog will open. The waveforms are also shared per module; therefore 4 different waveforms can be dropped and are available on each channel of that module. These waveforms are also saved in the setup file.

There are some rules for the waveform file:

- The file must be a .csv format
- Each row is one value or sample
- Only values between -1 and 1 are allowed
- The separator must be a . (dot)
- A maximum of 16384 rows are allowed

The defined waveform corresponds to one period and will be repeated periodically.

Fig. 4.11 shows 3 different custom waveforms and Pattern2 is currently selected as Waveform in the settings.

OXYGEN Online Help, Release 7.6 FUNCTION GENERATOR OUTPUT SETTINGS CUSTOM WAVEFORM STORE Waveforms are shared per module. PATTERN2 Waveform 500 Hz Frequency 0 Amplitude 1 V_ RMS 4 Offset 0 ۷_ 1 deg_ Phase 0 3 Click or drop waveform file here

Fig. 4.11: Custom Waveform for the Function Generator mode

4.2.6 Stream Output / File Replay

The Stream Output functionality can be used to output scalar channels via the analog output channels of the TRION3-AOUT board, this is also possible with channels of a previously recorded OXYGEN file. This mode is also supported by the TRION3-AOUT as a standalone module.

To use this mode, the software must be in *LIVE* mode (data acquisition) or *REC* mode and is not supported in *PLAY* mode.

To use this mode, follow these steps:

- Open the channel settings of each channel, that should be used for the stream output (see Fig. 4.12).
- Change the mode to StreamOutput and select the desired range and output signal (voltage or current). For the output of channels of a previously recorded OXYGEN file, select the data source *Replay* in the *Stream Output Settings*, all further settings are done in the Stream Output instrument. For the output of any scalar OXYGEN channel, specify "Live" as data source, as well as the source channel in the *Stream Output Settings* and define the delay time (0.5 .. 10 s), as well as a necessary conversion factor or offset.

A0 4/1 TRION3-AOUT	SN:1234567890 F-8 AO 4/1 Sim			
OUTPUT AMPLI	FIER OPTIONS	STREAM OUTPUT SETTINGS		
Mode	Stream Output	Data Source	Live 👍	
Range	-10 V 10 V	Source channel	Al 1/l1 Sim	
Output mode	High Speed	Delay	_ 1 s	
LP filter	, Off 🔬	Factor	1	
	8 Bessel	Offset	0	

Fig. 4.12: Channel settings for the Stream Output functionality

• To replay channels of a previously recorded OXYGEN file, go to your measurement screen and open the small Instrument menu. A separate instrument exists for loading the data file and choosing the channels to be output/restreamed. As seen in Fig. 4.13, drag and drop the instrument on your measurement screen, adjust the size and place it to a desired location.

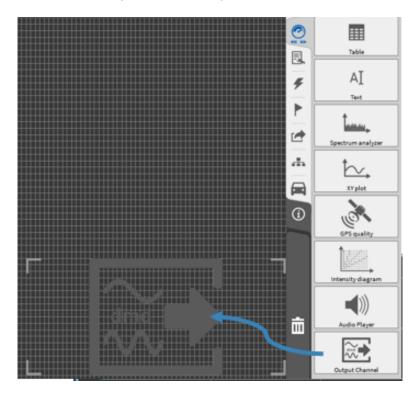


Fig. 4.13: Use Stream Output Instrument on the measurement screen

• Open the small Data Channel list in order to choose the analog output channels, which should be used for the Stream Output functionality. Select the instrument and click on the respective channels or drag and drop the channels into the instrument. Up to 8 channels can be used in one instrument.

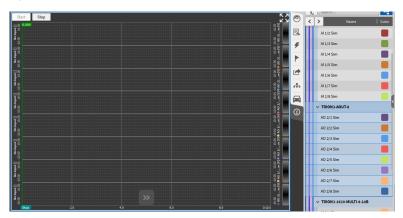


Fig. 4.14: Choosing the analog output channels

Note: Only channels with the mode StreamOutput can be used in the instrument (see above). If analog output channels are used, which have another mode selected in the channel settings, a warning appears in the instrument itself, see Fig. 4.15. In this case, open the channel settings of the used channel and check the selected mode.

Fig. 4.15: Warning when using analog output channel with wrong mode in Stream Output Instrument

- To load a data file and choose the channels to be output, open the instrument properties by either double-clicking on the instrument itself or selecting the instrument and open the Instrument Properties menu tab (see Fig. 4.16).
- ① Click on Browse to choose the .dmd file to be replayed.
- (2) Assign the input channel to the output channel.
- ③ Adjust the output scaling factor.
- ④ Adjust the output offset, if desired.
- (5) Loop the playback, otherwise the signal will only be output once.
- 6 Use the cursors to replay only a certain part of the data file.
- ⑦ Start/stop/pause the playback.
- (8) Playback mode "Replay" is used to play back channels of a previously recorded OXYGEN file. (see Fig. 4.16) Playback mode "Live" is used to play back scalar channels of the current measurement (see Fig. 4.17), no data is displayed in the instrument. In "Live" mode, the instrument is only used to set the channels to be transmitted, which are directly output as AOUT channels with the set delay time.

Fig. 4.16: Stream Output Instrument: Instrument properties (Replay)

			المراجع المراجع المراجع الم	Autig M
AO 4/1 Sim (V) Decent life hereige	Constraints of the second	Connect sink its reader	Channel Adv to Series [V] Observed Adve Two requires	Part NL Terms URD (and URD Prove) Terms (and ACC) failed URD (and URD Prove) Terms (and ACC) failed F PLEPERCK Unrepresentation F PLEPERCK Unrepres
AO 4/5 Sim [V] Decent data har replay	Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro) (Contro) (AD 4/2 Sim (V) Course data harman	AD 4/(8 Sim (V) Denne Ann han spins	Adverse Server #1/15 Sm Server #1

Fig. 4.17: Stream Output Instrument: Instrument properties (Live)

4.2.7 Channel SUM Mode

The channel mode "Channel Sum", enables the creation of a linear equation of up to 8 Als and can output this via an AO channel. To use this feature, a firmware update must be made. Useful for shaker control.

 $AO_{i} = (X_{1}AI_{1} + X_{2}AI_{2} + X_{3}AI_{3} + X_{4}AI_{4} + X_{5}AI_{5} + X_{6}AI_{6} + X_{7}AI_{7} + X_{8}AI_{8}) * Y$

For the first 8 analog inputs a scaling between -10 and 10 can be chosen (1) denoted in the equation before as X_i. To scale the resulting formula the output scale can be set between -100 and 100 (2) denoted before as Y. Lastly, the output value type can be selected as actual, average or RMS (3). When choosing Average or RMS, the window type (4) can be defined as moving or fixed.

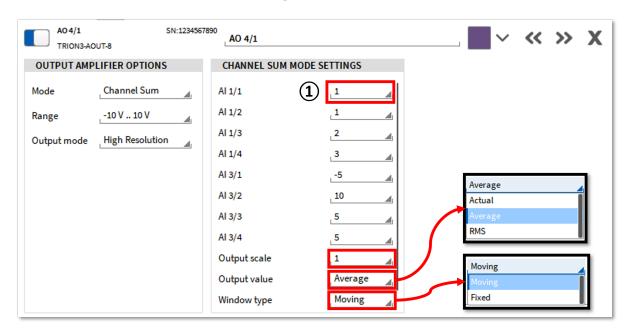


Fig. 4.18: Channel Sum mode settings

4.3 Using TRIONet in OXYGEN

In addition to the steps explained in *Using TRION hardware with OXYGEN*, the following steps must be carried out if TRION hardware is used in combination with a TRIONet.

• Choose 'Auto' from the '*Network Interfaces*' drop-down menu (see *Using TRION hardware with OXYGEN*). This will scan all ethernet ports and automatically detect the TRIONet device.

🛆 оху	GEN						
@	NET	Settings					
1¢r	Nodes	OXYGEN-NE	T SETTINGS				
:=		Enat	ole OXYGEN-NET				
	Sync						
E.	Settings	Allow claim					
0							
		TRIONET SE	TTINGS				
4							
		Auto c	laim Disabled	TRIONet devices have to be claimed manually.			
r							
		 Auto c 	laim USB	Claim TRIONet devices connected by USB automatically.			
-		Auto c	laim ALL	Claim any found TRIONet device automatically. Use this option only in private networks. All found devices will be claimed!			
		TRIONET NE	TWORK INTERFACES				
(i)		Interface Na	me TRIONet USB	Network to use with TRIONet devices.			
		Addresses	Auto				
		Netmasks	TRIONet USB				
			Ethernet 2				
			Loopback Pseudo-Interface 1				

Fig. 4.19: Network Interface settings

• The IP-address of the adapter is shown in the field below (see Fig. 4.20)

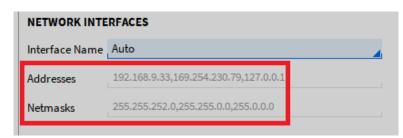


Fig. 4.20: IP addresses of connected TRIONets

• Now switching to Channel List will display the TRIONet and installed modules

Note: Besides the TRION hardware driver, there is no additional driver required to use a TRIONet with your measurement system. For additional information about the TRIONet and troubleshooting, please refer to the TRIONet Technical Reference Manual.

4.4 Using EPAD2 with OXYGEN

4.4.1 Using EPAD2 with OXYGEN on a DEWE or DEWE2 system

For connecting an EPAD2 module with your hardware, the DEWE and DEWE2 series products (except TRIONet) have a connector on the housing marked with the word *EPAD* (see Fig. 4.21).

Fig. 4.21: Connection of EPAD modules

- Expand the System Settings menu fully across the screen
- Select the DAQ Hardware section and ensure the slider button next to the EPAD Series is activated (see Fig. 4.22). Changes take effect on application restart.

Ø	System Settings	DAQ Hardware
	Measurement Setup Header Data Advanced Setup	ADMA ALTA_DT
0	Hardware	CAMERA
۶	Sync Setup	DAQP
	DAQ Hardware	EPAD
	Amplifier / RS232 / RS485	GIGECAMERA
*	Sensors	ORIONDAQ

Fig. 4.22: Enabling the EPAD Series in the DAQ Hardware setup

• Select the proper Serial Port for your EPAD2 module by clicking on the *Select ports...* button (see Fig. 4.23). Systems in Europe are typically assigned to COM2 and systems in the USA are typically assigned to COM3).

₫	System Settings	Amplifier / RS232 / RS485
	Measurement Setup Header Data	СОМЗ
	Advanced Setup	СОМ4
9	Hardware Sync Setup	DAQP / EPAD MODULES
$\overline{\mathbf{N}}$	DAQ Hardware	Min Address 0
	Amplifier / RS232 / RS485 Sensors	Max Address 31
·#	Extensions and Plugins	Scan for modules
	Plugins Overview Remote Control	Program module addresses
(i)	User Interface	DAQP MODULES
	UI Options	Output range 5V
	Localization	EPAD POLLING SETTINGS
	Security	Simultaneous timestamps
	Advanced Graphics	

Fig. 4.23: Selection of the proper COM port

• Press the *Scan for modules* button (see Fig. 4.24). The system will scan the selected Serial Port for any present EPAD2 modules. The status can be seen in the lower right corner of the software.

DAQP / EPAD MODULES							
Min Address	0						
Max Address	31						
PAD-DO7 Supp	port						
Scan for modules							
Program module addresses							

Fig. 4.24: Scan for modules button

• If an EPAD2 module is found, the user will be presented with a message in the lower right corner of the software (see Fig. 4.25) stating that the software has found an EPAD2 module.

Scanning for modules (0-7) on COM2(found: 1)	

Fig. 4.25: EPAD found message

• If you have multiple EPAD2 modules daisy chained together, the user can select the *Program module addresses...* button (see Fig. 4.26).

LES							
0							
_ 31							
rt							
Scan for modules							
Program module addresses							

Fig. 4.26: Program module addresses button

- Next, select the starting EPAD2 address (cannot be 0) and then select *Start programming* (see Fig. 4.27).
- Once the programming has begun, the software will ask you to press the black *ID* button (see Fig. 4.28) on the first EPAD2 module. Then it will increment the address in the software by one. At this point you will press the second EPAD2s' black *ID* button and so on.
- When finished programming, select the Stop Programming button (see Fig. 4.27).

	Module Programming on COM3 Address: 0 + -				
	Stop programming				
Module Programming on COM3 Address: 0 +	Press ID Button on Module to program address 0 on COM3				
Start programming	0				
Close	ATTENTION: address 0 will not work with EPAD modules!				

Fig. 4.27: EPAD-programming procedure

Fig. 4.28: Front of an EPAD2 module

4.4.2 Using EPADS with OXYGEN via EPAD2-USB module

EPAD2 modules can also be used as stand-alone measurement solution (CVT-Logger) without DEWE or DEWE2 hardware. Therefore, they can be connected via the EPAD2-USB module to the measurement PC. This is also a solution for using EPAD2 modules in combination with a TRIONet which has no EPAD connector.

Make sure that the driver for the EPAD2-USB module is installed on the measurement PC. The *setup.exe* file can be found in the folder *files**drivers3_communication**dewetron_usb* of the *Install Media* USB stick which is delivered with the EPAD2-USB module. After finishing the driver installation, the EPAD2 module can be programmed in OXYGEN in the same manner which is explained in *General settings*. The correct COM port can be found in the Device Manager of your PC in this case. The COM port which is called *TUSB3410 DEVICE* is the correct one (see Fig. 4.29).

Fig. 4.29: COM port section in the Device Manager

4.4.3 Troubleshooting

If no EPAD module is found during the scan for modules although it is connected, check the following items and then rescan for EPAD2 modules:

- Ensure your EPAD2 is compatible with OXYGEN (in OXYGEN 3.2 and higher all EPAD-modules except EPAD2-USB are supported).
- Check to see if the EPAD2 is properly connected to the system.
- Make sure the LED beneath the ID push button is illuminated when the EPAD2 is connected to the system.
- Choose another COM port, and rescan for the EPAD2 modules.
- If using several EPAD2 modules, ensure that the terminating resistor is in place.

4.4.4 EPAD channel list

- After the programming of the EPAD2 module(s) is finished, close the System Settings menu and fully open the Data Channels menu across the screen
- The EPAD2 module(s) are now visible in the system overview at the top of the Channel List (1) and are available in an own EPAD channel section in the Channel List (2) (see Fig. 4.30)
- The Channel List can also be filtered to EPAD channels
- By clicking the Up and Down arrow next to the picture of the EPAD-module, the user can quickly navigate between several EPAD-modules connected to the system

_	_					_											
÷	Ι.			т	RIONet												
	'	LocalNo	ode														
:=				EPA	D2-TH8-T												
0										Addr.	1						
0										\bigcirc							
E.																	
						CHO	СН1 СН2 СН3	CH4 CH5	CH6 CH7	EPAD2-TH	18						
4	All		A Sea	arch		🏹 📑					«	:					
	~		∦ ×	Active	Stored	I	Channel	Color	Setup	Scaled Valu	e	Mode	Sample Rate	Range		Scaling	
<u> </u>						Al 2/2 Sim	TRION-2402-dACC-8-5		ø	0.000000	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	8
1	Ш					Al 2/3 Sim			*	-100	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	Advanced
					ō	AI 2/3 Al 2/4 Sim	TRION-2402-dACC-8-5		*	-100 -20.031998	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	Ad
						AI 2/4 AI 2/5 Sim	TRION-2402-dACC-8-5		÷	-100	AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1	Unit: V	
(i)					ŏ	AI 2/5 AI 2/6 Sim	TRION-2402-dACC-8-9		÷	-100 -69.919992	AVG	Voltage	10000 Hz	-100 V 100 V	Offset: 0 Scale: 1	Unit: V	
	Ш				ŏ	AI 2/6 AI 2/7 Sim	TRION-2402-dACC-8-9	мв	~ ©	-100 0.000000	AVG	Voltage	10000 Hz	-100 V 100 V	Offset: 0 Scale: 1	Unit: V	
	Ш				ŏ	AI 2/8 Sim	TRION-2402-dACC-8-0		* @	-100 0.000000	AVG	Voltage	10000 Hz	-100 V 100 V	Offset: 0 Scale: 1	Unit: V	
	Ш	$\overline{\mathbf{v}}$				A12/8	TRION-2402-dACC-8-5	мв	*	-100	100	voltage	10000 Hz	-100 V 100 V	Offset: 0		
	Ш	Ľ				CNT 2/1 Si		_		7.708300e+4	AVG				Scale: 1	Unit:	
	Ш					CNT 2/1	TRION-2402-BACC-8-5 _CNT 2/1 Sim	мв	\$	-2147483648 23 1.000000e+6	47483547] AVG	Events	10000 Hz	-2.14748365e748365e+009	Offset: 0 Scale: 1	Unit: Hz	
	Ш					CNT 2/1_Sub Angle_CNT	TRION-2402-dACC-8-9	мв	\$	5.419922e+4	AVG	Frequency	10000 Hz	0.001 Hz 80000000 Hz	Offset: 0 Scale: 1	Unit: °	
	Ш				0		ement TRION-24CC-8-5	ымв	۵	0 1.171875e+5	AVG	Rotation	10000 Hz	0 ° 360 °	Offset: 0 Scale: 1	Unit: rpm	
	Ш				0	CNT 2/1_Velocity	TRION-2402-dACC-8-5	ымв	\$	-100000	100000	Velocity	10000 Hz	-100000 rpm 100000 rpm	Offset: 0	Onicipii	
	Ш	~	ш		COUNTE	R CNT 2/2 S			\$P		11/5						
	Ш					CNT 2/2 Sin	TRION-2402-dACC-8-9	ымв	帝	1.541663e+5	AVG 47483547]	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:	
	Ш					CNT 2/2_Sub	CNT 2/2 Sim TRION-2402-dACC-8-5	ымв	@	1.000000e+6	AVG	Frequency	10000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Offset: 0	Unit: Hz	
	Ш						ement TRION-24CC-8-5	ымв	۵	1.083983e+5	AVG 360	Rotation	10000 Hz	0 ° 360 °	Scale: 1 Offset: 0	Unit °	
	Ш					Speed_CN CNT 2/2_Velocity	TRION-2402-dACC-8-5		\$	1.171875e+5	AVG	Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Offset: 0	Unit: rpm	
	⊻		✓		EPAD												
	0	•	✓		EPAD2-T												
						EPAD 1/0 EPAD 1/0	EPAD2-TH	18-T	۵	4.000000e+2	ACT 401	Temperature	10 Hz	TC Type T -270 degC _ 400 degC	Scale: 1 Offset: 0	Unit: °C	
			✓			EPAD 1/1 EPAD 1/1	EPAD2-TH	18-T	۵	4.000000e+2	ACT 400	Temperature	10 Hz	TC Type T -270 degC _ 400 degC	Scale: 1 Offset: 0	Unit: °C	
			✓			EPAD 1/2 EPAD 1/2	EPAD2-TH	(8-T	۵	4.000000e+2	ACT 400	Temperature	10 Hz	TC Type T -270 degC _ 400 degC	Scale: 1 Offset: 0	Unit: °C	
						EPAD 1/3 EPAD 1/3	EPAD2-TH		÷	4.000000e+2	ACT 403	Temperature	10 Hz	TC Type T -270 degC _ 400 degC	Scale: 1 Offset: 0	Unit: °C	
			✓			EPAD 1/4 EPAD 1/4	EPAD2-Tr		\$	4.000000e+2	ACT 400	Temperature	10 Hz	TC Type T -270 degC _ 400 degC	Scale: 1 Offset: 0	Unit: °C	
			 ✓ 			EPAD 1/5	EPAD2-TH		۵	4.000000e+2	ACT	Temperature	10 Hz	TC Type T -270 degC_400 degC	Scale: 1 Offset: 0	Unit: °C	
						EPAD 1/6	EPAD2-TH		۵	4.000000e+2	ACT	Temperature	10 Hz	TC Type T -270 degC _400 degC	Scale: 1 Offset: 0	Unit: °C	
						EPAD 1/7 EPAD 1/7	EPAD2-TH		÷	4.000000e+2	ACT	Temperature	10 Hz	TC Type T	Scale: 1 Offset: 0	Unit: °C	
			-			EPRD 1/7	EPAD2-TH	1011		1270	40.			-270 degC _ 400 degC	Onser-0		

Fig. 4.30: EPAD channel list

Note: If no thermocouple is connected to an EPAD-channel, the value 1372.0 °C (2501.6 °F) is displayed.

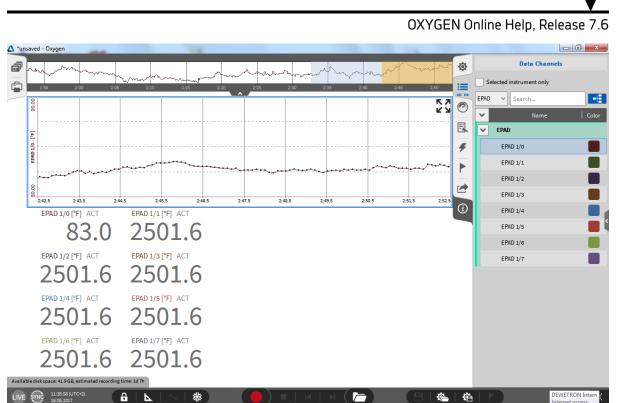


Fig. 4.31: Displaying EPAD2 data

4.5 Using XRs / CPADs with OXYGEN

This section describes the setup process when using CPADs in OXYGEN. The same process is valid for setting up an XR.

For settings up CPADs and decoding their data without the need to load a .dbc file OXYGEN R5.6 (and later) provides a CPAD Decoder plugin. All CPAD types are supported.

This plugin can be used to do the following in OXYGEN: - Change the CPAD module's Baud rate - Read out module properties - Edit CPAD channel settings - Change CPAD sample rate

For sure, the conventional approach of decoding the CPAD's CAN data by loading a .dbc file is still supported.

To decode CPAD data with the CPAD Decoder plugin per form the following steps:

- Connect the CPAD to the desired CAN port and open its Channel settings in the Channel List (see

 in Fig. 4.32).
- Select the Baud rate of the CPAD (see 2) in Fig. 4.32)
- If you don't know the CPAD's Baud rate change the Baud rates until the Frame Preview shows alternating Message IDs and frames (see ③ in Fig. 4.32)
- Make sure that the CAN bus is terminated with a 120 Ohm resistor or set the internal module termination to True (see ④ in Fig. 4.32)
- When the Baud rate is set up correctly press Add decoder (see (5) in Fig. 4.32)

🔛 🏱 🍾 al

7,		Analo	g CAN		i i i	Search			CAN 1	/1	_	SN:A0	1200B	9	CAN	/ .	_	_	_
1x	<	>		Channel		Color	Setup		TRION	-CAN-	4				CAN	1/1			
	~	Local	Node					POF	RT COM	IFIG									
	V DEWE2-A4							Baud	rate			5000	00 Ba	ud	2)			4
	V TRION-CAN-4			Listen	only			Fals	e						4				
			CAN 1/1 CAN 1/1 CAN 1/2		TRION-CAN-4		•	Termi	ination	(1)	True	,						4
			CAN 1/2 CAN 1/2 CAN 1/3		TRION-CAN-4		©	Auton	iomou	s Resi	end	Fals	e						4
			CAN 1/3 CAN 1/4		TRION-CAN-4		*	Times	stamp			AD S	amp	le Rat	e				
		> 1	CAN 1/4 RION-2402-	MULTI-4-D	TRION-CAN-4	-		CPAD						Add	decod	der		(5	5)
								Lo	ad DB	c		Load	ARXI	۱L		Cle	ar a	IL	
								FRA	ME PR	EVIE	W								
								Messa	ge ID:	0x36	0500	(3)						
									7	6		5	4	3	2	1	L	0	
								0	0 7	0	60	50	4	1 3	0	2 0	1)	0
								1	0 15	0	16 0	13 0	12	0 11	0 1	0 0	9		8
								2	0 21	0	22 0	21 0	20	0 19	0 1	8 0	17) :	16
								3	1 31	1	30 1	29 0	28	0 27	1 2	6 1	25) :	14
								- 4	0 35	0	38 0	37 0	36	1 35	0 3	6 0	33	. :	12

Fig. 4.32: Adding a CPAD decoder

Alternately, the CPAD decoder plugin can be added by the "+"-button as well. To do so, select the correct CAN-bus, press "+", choose *CPAD Decoder* and press *Add* (see Fig. 4.33). With the option "Synchronous output channels" (4), the acquired CAN data is forced to equidistant timestamps.

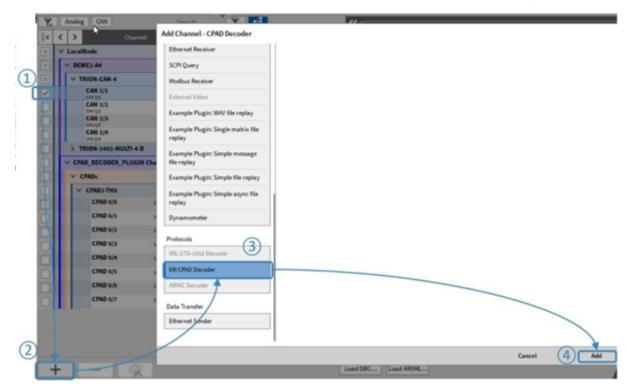


Fig. 4.33: Adding a CPAD decoder Adding a CPAD decoder (alternate approach)

After creating the CPAD decoder, the detected CPADs and their channel can be found in the channel list (see (1) in Fig. 4.34). If desired, the referring CAN port can be changed (i.e. when a CPAD is connected to a different port) by selecting a different CAN port in (2) in Fig. 4.34. The module baud rate can be changed here as well (see (4) in Fig. 4.34) in addition to the synchronous timestamp forcing equidistant timestamps if "True" (5). Make sure to change the CAN bus baud rate as well to properly receive and decode data in (2) of Fig. 4.32.

Additionally, the configuration of the CPAD / XR can be saved into a DBC-file here (see $\textcircled{3}$) in Fig. 4.34).
---	----------------	----

Analog Counter CAN Video Search Analog Counter CAN Video Search Concentration Control Counter Counter Concentration Concentration Concentration Concentration Concentration Con	Setup PROPERTIES Input channelCAV 3/18[RemoteNode] 2 DBC file path Baud rateS0000 Baud 4	3 (Browse)
Data Folder >	D./ DATA Newfolder	Size Date
> ~ V:/ > ~ Z:/ Browse	Delete File name CPS:03-TH8_44528.dbc File type *.dbc	New folder Cancel Save

Fig. 4.34: CPAD decoder settings

Note: If one of several connected modules cannot be found in the list it has most likely a different baud rate that the others. Change the CAN bus baud rate until the missing module is detected and change the module baud rate to the desired baud rate. You can disconnect all modules but the missing module for an easier workflow here.

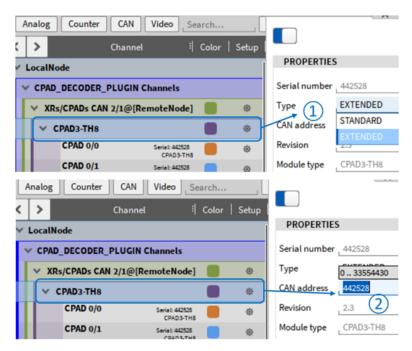
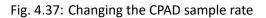


Fig. 4.35: CPAD specific properties

It is possible to edit the CAN address/ID of the CAN Message sent by the CPAD in decimal form (see (1) in Fig. 4.35).ID Type Extended (by default) or Standard can be selected (see (2) in Fig. 4.35).


The channel settings can be edited in the individual CPAD channel setup (see Fig. 4.36):

7		A	nalog	CAN	S	earch			٦	Serial: 442528	. CPAD 0/0	
8×	<	(>		Channel :	Color	Setup		U 003		CPAD 0/0	
	`	~ 1	Local	lode				PI	ROPERTI	ES		
	I	~	DEW	/E2-A4				Ran	ge	1372		degC
	I	Т	V TR	NON-CAN-4				Mod	le	Temperature		A 1
				CAN 1/1 CAN 1/1	TRION-CAN-4		۲	Sen	sor type	ТС Туре К		
	Ι			CAN 1/2 CAN 1/2	TRION-CAN-4		æ					
				CAN 1/3 CAN 1/3	TRION-CAN-4		۲					
				CAN 1/4 CAN 1/4	TRION-CAN-4		۲					
			> TR	RION-2402-M	ULTI-4-D							
		~	CPA	D_DECODER	PLUGIN Channels							
			~ c	PADs			æ					
			~	CPAD3-TH8			¢					
				CPAD 0/0	Serial: 442528 CPAD3-TH		٥		REVIEW			
				CPAD 0/1	Serial: 442528 CPAD3-TH		۰	1372				
				CPAD 0/2	Serial: 442528 CPAD3-TH		۲					
				CPAD 0/3	Serial: 442528 CPAD3-TH		۲	[]C]				
				CPAD 0/4	Serial: 442528 CPAD3-TH		۲	270				-K
				CPAD 0/5	Serial: 442528 CPAD3-TH		۲	· ?	-10s			-0.02s

Fig. 4.36: CPAD channel setting

The CPAD's sample rate can be changed in the Sample Rate column of the Chanel List (see Fig. 4.37):

×	<	>		Channel	i Color	Setup	Active	Stored	Scaled Value	Mode	비 Sample	Rate	Range	Scali
	×	Loca	lNode											
		> DE	WE2-A4											
	Г	✓ CP	AD_DECODER_	PLUGIN Channels										
		~	CPADs			۲				•				
	П	~	CPAD3-TH8			۲								
			CPAD 0/0	Serial: 44252 CPAD3-T		۲			23.999054 AV		10 H	z	TC Type K -270 degC 1372 degC	Scale: 1 Offset: 0
	П		CPAD 0/1	Serial: 44252 CPAD3-T		۲			1372.0000 AV		10 H	z	TC Type K -270 degC 1372 degC	Scale: 1 Offset: 0
			CPAD 0/2	Serial: 44252 CPAD3-T		۲			1372.0000 AV		10 H	z	TC Type K	Scale: 1 Offset: 0

4.6 Using DAQP/HSI Modules with OXYGEN

4.6.1 Connecting DAQP/HSI Modules via an ORION Card to the Measurement System

DEWE-ORION-xx16-xxx boards

If the DAQP/HSI modules are connected via DEWE-ORION-xx16-xxx boards to the measurement system, go to the DAQ Hardware setup and make sure that the ORIONDAQ Series hardware is enabled as well as the DAQP Series (see Fig. 4.38) (Changes take effect on application restart) and that the proper driver is installed.

The installer is named DeweDevSetup_x64.exe for 64-bit systems and DeweDevSetup_x86.exe for 32-bit systems and can be found in the folder

\files\drivers\2_daqboards\dewetron\orion_driver\DAQ-BOARDS_DRIVER_v2.1.0.0 of the Install Media USB stick which is delivered with the measurement system.

• DEWE-ORION-xx22-xxx and DEWE-ORION-xx24-xxx boards

If the DAQP/HSI modules are connected via DEWE-ORION-xx24-xxx or DEWE-ORION-xx22-xxx boards to the measurement system, go to the *DAQ Hardware* setup and make sure that the *ORIONDSA Series* hardware is enabled as well as the *DAQP Series* (see Fig. 4.38) (changes take effect on application restart) and that the proper driver is installed.

The installer is named DeweDevSetup_x64.exe for 64-bit systems and DeweDevSetup x86.exe for 32-bit systems and can be found in the folder \files\drivers\2_daqboards\dewetron\orion_driver\DSA-BOARDS_DRIVER_v4.1.0.0 of the Install Media USB stick which is delivered with the measurement system.

@	System Settings	DAQ Ha	rdware	
10				
:	Measurement Setup			
E.	Header Data		ADMA	
	Advanced Setup		ALTA_DT	
0	Hardware		CAMERA	
۶	Sync Setup		DAQP	
	DAQ Hardware		EPAD	
	Amplifier / RS232 / RS485		GIGECAMERA	
_	Sensors		ORIONDAQ	
- F				
_	Extensions and Plugins		ORIONDSA	
	Plugins Overview	\square	OXTS	
i	Remote Control		SIM	
			DIM	
	User Interface		TRION	
	UI Options			

Fig. 4.38: Enabling the ORION DAQ/DSA Series in the DAQ Hardware setup

4.6.2 Connecting DAQP/HSI modules via a TRION-1802/1600-dLV board

• Go to the DAQ Hardware setup in the System Settings and make sure that the DAQP Series and the TRION Series are enabled (see Fig. 4.39). Changes take effect on application restart.

ø	System Settings	DAQ Hardware
- 10+		
:≡]	Measurement Setup	
	Header Data	ADMA
	Advanced Setup	ALTA_DT
•	Hardware	CAMERA
۶	Sync Setup	DAQP
	DAQ Hardware	EPAD EPAD
	Amplifier / RS232 / RS485	GIGECAMERA
	Sensors	ORIONDAQ
-the	Extensions and Plugins	ORIONDSA
	Plugins Overview	U) ORIONDSA
		OXTS OXTS
(i)	Remote Control	SIM
	User Interface	
	UI Options	
	Localization	VECTOR

Fig. 4.39: Enabling DAQP and TRION hardware in the DAQ Hardware setup

- Make sure that the driver for the TRION-hardware is installed. The installer is named *DEWETRON-TRION-Applications-x64.exe* and can be found in the folder *files\drivers\2_daqboards\dewetron\trion_driver\DEWETRON TRION Rx.x* of the *Install Media* USB stick which is delivered with the measurement system.
- If the driver was installed correctly, the *DEWE2 Explorer* will be available in Windows start menu.

4.6.3 Programming the modules addresses

Q	System Settings	Amplifier / RS232 / RS485
	Measurement Setup	Сомз
	Header Data Advanced Setup	COM4
© #	Hardware Sync Setup	DAQP / EPAD MODULES
\mathbf{F}	DAQ Hardware	Min Address 0
	Amplifier / RS232 / RS485	Max Address31
	Sensors	PAD-DO7 Support
æ	Extensions and Plugins	Scan for modules
	Plugins Overview	Program module addresses
i	Remote Control	
	User Interface	DAQP MODULES
	UI Options	Output range 5V
	Localization	EPAD POLLING SETTINGS
	Security	Simultaneous timestamps
	Advanced Graphics	

Fig. 4.40: Programming module addresses

- Enable the Serial Port(s) on which the modules are connected (see (1) in Fig. 4.40).
- Select the proper output range of the module in the Advanced Setup (see Advanced settings).
- Click on *Program module addresses* (see 2) in Fig. 4.40).

TRION:	SLOT2@Main System	~
Address:	0	+ -
	Start programming	

Fig. 4.41: Module programming UI

• Select the proper Serial Port and click on *Start programming* (see Fig. 4.41). If the modules are connected to several serial ports, the Programming must be repeated for each serial port. The

following window will appear:

TRION: S	LOT2@Main System		
Address:	0	+	-
	Stop programm	ning	
	utton on Module to prog	gram address	s 0 on
	utton on Module to prog .0T2@Main System	ram address	s 0 on

Fig. 4.42: Programming the module addresses

• Keep the ID button of the DAQP/HSI module pressed until the *Address* increases. Repeat that procedure for all DAQP modules. After finished, press on *Stop programming* and close the window by pressing *Close & Scan* (see Fig. 4.43) or start the programming for a further Serial Port

Module Programming

Address:	8	+	
	Start pro	gramming	2+0

Fig. 4.43: Finish the module programming

 OXYGEN will now read the actual settings from the DAQP modules and write them to the channel settings in the software

Note: A click on *Scan for modules* will only scan for modules that have already been programmed and store the actual module settings

• The modules will appear in the Channel List now and the settings can be edited.

- F		earch		IRIG DC	GPS /		AING 3802-dLV	AMP A17/1@Main Sottem	STG	2/2@Main STG	2/3@Main System STG	1 2/4@Main System STG	AI 2/5@Main System MULTI	AI 2/6@Main System MULTI	AI 2/7@Main System MULTI	12/8@Main System MULTI				
	✔ ✔ Ac		1 7	IRIG DC	GPS /	AUX DIO	NG 180	AMP A12/10Main Su	STG	2/2@Main STG	2/3@Main Sy STG	4@Main Sy STG	@Main Sy MULTI	@Main Sy MULTI	@Main Sy MULTI	@Main Sy MULTI				
	✔ ✔ Ac		1 7	IRIG DC	GPS /	AUX DIO	NG 180	AMP	AI 2/1@M	2/2@M	S S@M	S	No.	N.	N.	No I				
	✔ ✔ Ac		-	IRIG DC	GPS /	AUX DIO	NG 180	A CIA	A 2	2			~	8	5					
	✔ ✔ Ac				-		ING.		St. 1	A	F	AI 2	AI 2	AI 2	AI 2	AI 2				
- -	✔ ✔ Ac		❣ -€	G			• A		0	1	2	3	4	5	6	7				
-	✔ ✔ Ac		Yx 📑										_							
		tive Stored						<												
			Channel	Color	Setup	Scaled Value		Mo	ode			Sampl	e Rate		l.	R	nge	1	Scaling	
8 H H		TRIONet: I	Aain System																	
		TRION-TIM																		
		D	I 1/1@Main System 1/1@Main System TRION-TIMIN	с 📕	@	0	AVG	Digit	ital In			1000	0 Hz			0	1			
			I 1/2@Main System 1/2@Main System TRION-TIMIN	g 🔲	@	1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
			1/3@Main System TRION-TIMIN	G 📕	۲	1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
			1/4@Main System TRION-TIMIN	G II		1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
		D	1/5@Main System		۲	1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
		D	1/6@Main System		۲	1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
		D	1/7@Main System		ø	1.000000	AVG	Digit	ital In			1000	0 Hz			0	1			
		D	1/8@Main System		@	1.000000	AVG	Digit	ital In			1000	D Hz			0	1			
			NT 1/1@Main System		ŵ	0.000000	AVG	Eve	ents			1000	0 Hz		-2.147	48365e	748365e+00	9 Scale: 1 Offset: 0		Unit:
			2-dLV-16-D	0		224142,040														
			2/1@Main System	. 🛛	۲	-9.999998	AVG	Volt	ltage			1000	0 Hz			-10 \	10 V	Scale: 1 Offset: 0		Unit: V
			2/2@Main System		٩	-9.999998	AVG	Volt	Itage			1000	0 Hz			-10 \	10 V	Scale: 1 Offset: 0		Unit: V
			2/2@Mein System DAQP-S1 2/3@Main System		۲	-9.999998	AVG	Volt	ltage			1000	0 Hz			-10 \	10 V	Scale: 1 Offset: 0		Unit: V
			2/3@Main System DAQP-S1 2/4@Main System		٢	-9.999998	AVG		ltage			1000	0 Hz				10 V	Scale: 1 Offset: 0		Unit: V
			2/4@Main System DAQP-S1 2/5@Main System		۰		AVG		ltage			1000	Hz			-51	5 V	Scale: 1 Offset: 0		Unit: V
			2/5@Main System DAQP-MUI		۵		AVG		ltage			1000) Hz			-5 \	5 V	Scale: 1 Offset: 0		Unit: V
			2/6@Mein System DAQP-MUI 2/7@Main System		۵		AVG		ltage			1000						Scale: 1		Unit: V
			2/7@Main System DAQP-MUI 2/8@Main System DAQP-MUI 2/8@Main System DAQP-MUI		~ @	0.073655	AVG		ltage			1000					5V	Offset: 0 Scale: 1 Offset: 0		Unit: V

Fig. 4.44: DAQP/HSI modules in the Channel List connected via TRION-1802-dLV

Note:

- Counter and Digital channels of an ORION card are not supported by OXYGEN.
- CAN channels of an ORION card are supported by OXYGEN and can be found at the bottom of the Channel List.

4.7 CAN-FD & FlexRay

Using CAN-FD is possible via NEXDAQ or a software option and using external hardware in the form of a vector box.

4.7.1 CAN-FD via NEXDAQ

Currently the NEXDAQ is the only DEWETRON DAQ which natively supports CAN-FD by default. Just switch to the channel list and enable the CAN-FD channel and set the appropriate baud rate high and baud rate (low). In case of using CAN mode set the same baud rate for both.

	LocalNode	CNT 1 CNT 2 CNT 2 CNT 3 CNT 4 CNT 2 CNT 4 CNT 2 CNT 4 CNT 2 CNT 4 CNT 2 CNT 4 CNT 4 CN	
	CAN Analog Digital Counter Search	CANFD 1/	21/1 SN:1234567890
	🛛 🗶 🖌 Channel 🗄 Color	Setup NEXDAQ-	CANFD 1/1 Sim
	DI 1/11 NEXDAQ-200	© PORT CONFI	IFIG
	DO 1/12 Sim DI 1/12 NEXDAQ-200	Baud rate	500000 Baud_
	> CNT 1/1 Sim	Sample point	t 70%, Seg1: 6, Seg2: 3, BTL: 10 📰
Δ	> CNT 1/2 Sim	夺	
	> CNT 1/3 Sim	Baud rate high	gh 4000000 Baud _a
	> CNT 1/4 Sim	🐵 Sample point h	t high 70%, Seg1: 6, Seg2: 3, BTL: 10 📰
	> CNT 1/5 Sim	<u>څ</u>	False
	> CNT 1/6 Sim	Listen only	
		Termination	False
		Autonomous R	Resend False
		Timestamp	AD Sample Rate
		TR/CPAD	Add decoder
		Load L	d DBC Load ARXML
	CANFD 1/1 Sim	Save D	e DBC Clear all
	CANFD 1/1 NEXDAQ-200	¢	Add message channel
	CANFD 1/2 NEXDAQ-200	rới.	Messages & signals
	> USB-Cameras		

Fig. 4.45: CAN-FD channels with the NEXDAQ

To switch between CAN-FD and CAN, create a message and switch the protocol.

CAN	16	Analog Digital Counter	Eh	
T	-		_Search	CAN MESSAGE CAN Message 1
	>	Channel	i Color Setup	
	>	CNT 1/1 Sim	¢	MESSAGE SETUP
	>	CNT 1/2 Sim	Φ	Protocol CAN
	>	CNT 1/3 Sim	÷	Message ID CAN
	>	CNT 1/4 Sim	0	J1939
	>	CNT 1/5 Sim	0	Type CAN_FD
п	>	CNT 1/6 Sim	٠	DLC 8
	>	CNT 1/7 Sim	Φ	Mode Receive
п	>	CNT 1/8 Sim	0	Add signal channel
	>	CNT 1/9 Sim	÷	FRAME PREVIEW
п	>	CNT 1/10 Sim	Φ	7 6 5 4 3 2 3 6
	>	CNT 1/11 Sim	÷	· · · · · · · · · · · · · · · · · · ·
	>	CNT 1/12 Sim	Φ	<u> </u>
	~	CANFD 1/1 Sim	EXDAQ-200	22 23 23 20 29 28 17 56 33 36 29 28 27 26 28 24
		CAN Message 1	•	xxx xxx

Fig. 4.46: Change protocol between CAN, CAN-FD and J1939

V

OXYGEN Online Help, Release 7.6

4.7.2 CAN-FD & Flexray in OXYGEN via Vectorbox

Note: CAN-FD data acquisition is an optional feature and requires a separate license for OXYGEN.

CAN-FD data streams can be acquired with OXYGEN if and only if the following hardware is used in combination with OXYGEN:

- Vector VN1610 (2 CAN-FD interfaces)
- Vector VN1630 (2 CAN-FD interfaces)
- Vector VN1640 (4 CAN-FD interfaces)

FlexRay data streams can be acquired with OXYGEN if and only if the following hardware is used in combination with OXYGEN:

- Vector VN7610 (1 FlexRay interfaces)
- The hardware must be connected via USB to the measurement system where OXYGEN is running on.
- Besides CAN-FD data acquisition, the VN16x0 interfaces can also be used to acquired conventional CAN-Data streams (up to 1 MBaud).
- In addition, it can also be used to transmit data over CAN. This is an additional optional feature and requires a separate license. For details, refer to CAN-OUT transmitting OXYGEN data via CAN:.
- To use one the above-mentioned CAN-FD and FlexRay interfaces, proceed the following steps:
- Run the latest *Vector_Driver_Setup* which is available on the Vector homepage and delivered together with the Vector hardware.
- Select the drivers of the hardware device that shall be used and run the installation procedure (see Fig. 4.47).

Driver Selection		VECTOR	>
he setup will install or uninstall the selected	d devices.		
Device	Installed driver	Driver in installation packet	^
CAN/LIN Interface Family			- 11
VN1530 / VN1531	- not installed -	10.9.14	
VN1610 / VN1611 / VN1630 / VN1640		10.9.12	
VN1630 log	- not installed -	10.4.16	
FlexRay Interface Family			- 11
VN3300	- not installed -	8 2 26	
VN3600	- not installed -		
VN7570	- not installed -		
VN7572	- not installed -	11.0.12	
VN7600	- not installed -	9.9.26	
VN7610	- not installed -	10.6.14	
VN7640	- not installed -	10.8.20	
Vector Tool Platform			- 11
Vector Platform Manager	- not installed -	2.1.24	
VN8900 Interface Family	- not installed -	10.2.136	
VN8800 Interface Family	- not installed -	9.3.18	
Ethernet Interface Family			-
VN5610 / VN5610A	- not installed -	9.8.64	
VN5640	- not installed -	10.7.14	
MOST Interface Family			_
VN2600 / VN2610	- not installed -	8.8.22	
VN2640	- not installed -		
XL Interface Family			
CANcardXL	- not installed -	0 7 16	
CANcardXLe	- not installed -		
	- not installed -	7.9.50	Υ.
Select/deselect all devices			

Fig. 4.47: Vector driver selection

- After the installation is finished, connect the Vector device to the measurement system if not already happened.
- Open OXYGEN and go to System Settings DAQ Hardware and make sure that VECTOR Hardware is enabled (see DAQ Hardware)

Note: If *VECTOR* is written in red (see Fig. 4.49), your currently installed OXYGEN license does not support Vector CAN-FD hardware (see Fig. 4.49). Contact our support team for help and also for compatible drivers.

@	System Settings	DAQ Hardware		
100				
≔	Measurement Setup			
	Header Data		ADMA	
	Advanced Setup		ALTA_DT	
0	Hardware		CAMERA	
۶	Sync Setup		DAQP	
	DAQ Hardware		EPAD	
	Amplifier / RS232 / RS485		GIGECAMERA	
-	Sensors		ORIONDAQ	
	Extensions and Plugins		ORIONDSA	
	Plugins Overview		0170	
	Remote Control		OXTS	
i			SIM	
	User Interface		TRION	
	UI Options		INON	
	Localization		VECTOR	

Fig. 4.48: Enabling Vector CAN-FD hardware in OXYGEN

Fig. 4.49: Missing Vector CAN-FD hardware license

• Changing the settings in this menu, requires an OXYGEN restart.

Note: If the connection between the Vector hardware device and the measurement system should fail during the operation (i.e. the USB cable is unplugged), OXYGEN must be restarted after solving the connection problem to enable the CAN-FD data acquisition again.

4.7.3 Channel Setup for CAN-FD channels

• Open the OXYGEN Channel List. The Vector Hardware channels will be visible in the section *VNxxxx* of the Channel List (marked red in Fig. 4.50).

٥	Lo	ocalNode	USB-Cameras								
Ⅲ ■			OXTS Enclosure								
0			VN1610								
i.,											
۶	All	Sear	rch							~	
	x	< >	Channel	:	Color	Setup	Active 🗄	Stored	Scaled Value		Mode
		V LocalNo	ode								
		> Form	ula								
		> DEWE	2- A 4								
		ADMA Enclosure									
		USB-Cameras									
(i)		> oxts	Enclosure								
		VN16	10								
		VN:	1610								
			AN 1	VN1610 Channel 1		۵					FD
			AN 2 AN 2	VN 1610 Channel 2		۵					FD

Fig. 4.50: Channel List with Vector VN hardware included

• Click on the Gear button to open the Channel settings (marked blue in Fig. 4.50). The Baud rate and additional settings can be changed here and the dbc-file can be loaded (see Fig. 4.51).

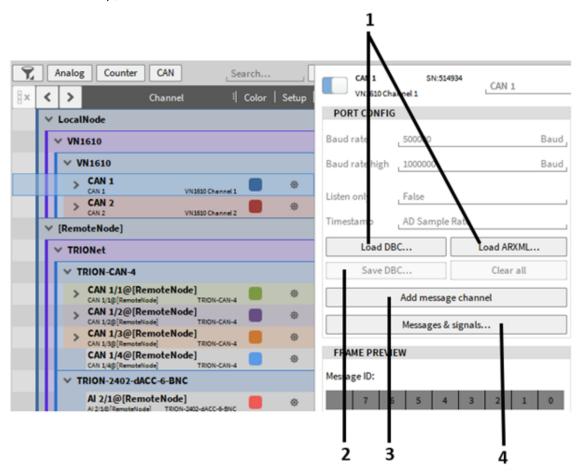


Fig. 4.51: CAN-FD channel settings

Table 4.2:	CAN-FD	channel	settings	(1)
------------	--------	---------	----------	-----

Nr.	Feature	Description
1	Load a dbc/arxml file	After the dbc/arxml file has been loaded, a channel selection dialog opens (see Fig. 4.55), in which the CAN FD messages and channels can be selected. It is possible to select single channels, messages or all channels and messages.
2	Save DBC file	If all CAN messages and signals have been configured, a *.dbc file can be created via Oxygen. After pressing "Save DBC" a window opens to define the save path and the file name.
3	Add message channel	After pressing the button, a new message channel is added automatically. Additional CAN signals can be defined for this channel (see numref: <i>CAN_messages_signal_1</i>).
4	Messages and signals	After pressing, a new window opens for a clearer display of all CAN messages and signals (see Fig. 4.53).

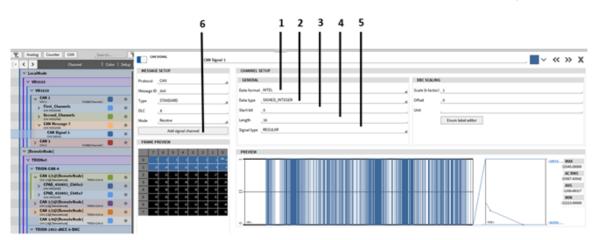
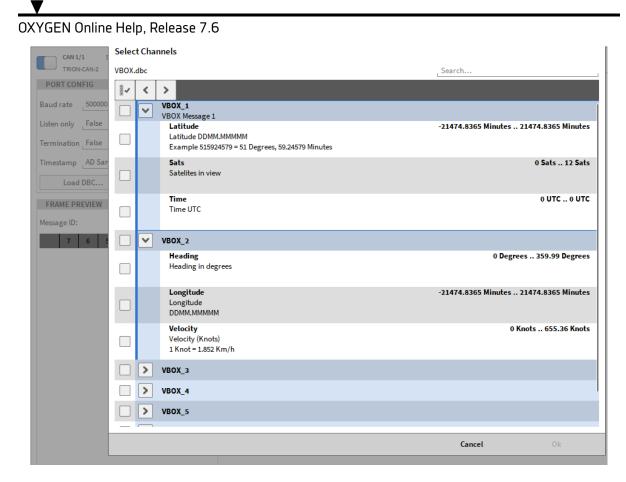


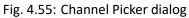
Fig. 4.52: CAN messages and signal settings (1)

Nr.	Feature	Description
1	Dataformat	Selection of the data format. You can choose between INTEL (little-endian) or MOTOROLA (big-endian).
2	Datatype	Here the data type of the signal is defined. DOUBLE, FLOAT, SIGNED_INTEGER and UN- SIGNED_INTEGER are available for selection.
3	Start Bit	Here the start bit of the respective signal is defined (first bit = 0).
4	Length of the signal	Here the length of the signal is defined, or the number of bits that represent the signal.
5	Signaltype	The choices are "REGULAR", "MULTIPLEXED" and "MULTIPLEXOR". "REGULAR": The indi- vidual signals within a CAN message are de- fined based on the start bit and length and are always constant for the CAN message. "MULTIPLEXOR": The signal is used to define the transmitted signals within the CAN mes- sage. The first bits represent the transmit- ted signals. Thus different signals can be transmitted with a CAN message of the same CAN ID, depending on the "MULTIPLEXOR" value. The "MULTIPLEXOR" value is called MUX ID. "MULTIPLEXED": Indicates that the signal is defined by the "MULTIPLEXOR". A multiplexed signal needs to specify its MUX ID. The signal or signals matching the MUX ID will be decoded.
6	Add signal channel	Additional signals can be added simply by pressing the "Add Signal Channel" button. A new window opens (see Fig. 4.53) for a better overview of all CAN messages and signals of the selected CAN port.

Table 4.3: CAN-FD channel settings (2)

	CAN Messages for CA Baud rate _50000 Baud	A Load DBC A	Add signal	Ads-defect new messages				:
Analog Digital Counter City Space.		Kame Kam Kame Kame Kame Kame Kame Kame Kame	(Color Active (Scaled Value	-			
Color Setup Localitade CONT2-EN31		CAN Signal 4 CAN Signal 5 CAN Signal 5 CAN Message 3		NaN	446 446			
STSTEN STRON-3430-POWER-4 TRON-3430-POWER-4 STRON-3430-MUUT-4-0 TRON-3430-MUUT-4		CAN Signal 6 CAN Signal 7 CAN Signal 8 CAN Signal 8		NaN	AVG AVG AVG AVG		dd mesage Ado-	blact new memaps
✓ TEION CAR 4 ✓ Can 517 Sim Tempore 0 Can 517 Sim Tempore 0 Can 517 Sim Tempore 0 Can thereage 2 On tempore 0 On tempore		 On space 	•••			Samething Weight How None In Contraction M None	& Rens which d	Scaled Value
> CAR Message 3 0 0						Image: Construction of the second s		45 45
						CHI Sgruit 6 CHI Sgruit 6 CHI Sgruit 7 CHI Sgruit 8		A/5 A/5 A/5 A/5
						01 GR Senal 3 V 01 GR Mesage 2,4 V 01 GR Mesage 2,4 V 01 GR Senal 3,33 V 01 GR Senal 4,33 V 01 GR Senal 4,33 V 01 GR Senal 3		A05
						C CNSpart_D	a C NA	45


Fig. 4.53: CAN messages and signal settings (2)


• By pressing the button "1" (see Fig. 4.53), the marked CAN messages and signals are copied and added to the list of existing CAN messages and signals including the settings.

٩,		Analog	g Digital Counter	CAN Searc	:h						« —	
****	<	>	Channel		Color	Setup	Active	i Stored	i Scale	ed Value	Message ID	CAN/MessageProb
	~	Local	Node								24 Xt 📡	
	Г	V DEV	NE3-A4									
		> \$	YSTEM									
		> т	RION3-1820-POWER-4								0x40	
	П	> т	RION3-1820-MULTI-4-D								0x41	
		∨ т	RION-CAN-4								0x42	
	П	~	CAN 4/1 Sim	TRON-CAN-4		۲						
			CAN Message 1			۲		. 🖸				CAN
			CAN Signal 1 CAN SIGNAL			۰			NaN	AV	0x40	CAN
			CAN Signal 2 CAN SIGNAL			۲			NaN	AV	G 0x40	CAN
			CAN Message 2 CAN MESSAGE			۲					0x41	CAN
			CAN Message 3 CAN MESSAGE			۲					0x42	CAN
			CAN 4/2 Sim	TRION-CAN-4		۲						
			CAN 4/3 Sim	TRION-CAN-4		۲						
			CAN 4/4 Sim	TRION-CAN-4		¢						

Fig. 4.54: CAN messages ID

• In the channel list it is also possible to filter the available CAN message IDs to get a better overview or to display only the CAN messages that are needed for the current application (see Fig. 4.54)

- To select additional channels later on, just reload the dbc-file and pick more channel In the channel picker dialog. The *Clear all* (Fig. 4.51) buttons deletes the current channel selection.
- After loading the channels from the dbc-file, an arrow positioned left to the Channel name will appear. A click on the Arrow will expand the CAN-FD channel list and show the individual CAN-FD messages including their channels (see Fig. 4.56).

		DEWE2-A4	CH1	CH 2 CH		CH 5 CH 6	00			
\$	Local		4			$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $	2402-dAC			
:=		ADMA Enclosure	CAN		CAN		CAN			
			СН		сн:					
0		USB-Cameras	•			\sim	2402-M			
i:		O		IRIG DO	GPS AU					
Ŧ					-					
_	All	Search					~~			
	8× <		innel i i	Color Setup	Active i Sto	ored Scaled V	alue	Mode	I Sample Rate	Range
_		DEWE2-A4 ADMA Enclosure								
÷.		> ADMA								
		USB-Cameras								
<i>(</i> i <i>)</i>		OXTS Enclosure								
		VN1610								
1		VN1610								
		CAN 1 CAN 1	VN1610 Channel 1	¢				FD		
		VBOX_1 CAN MESSAGE		•				Receive		
		Latitude CAN SIGNAL		¢		NaN -21474.836	AVG 21474.836			-21474.83658365 Minutes
		CAN SIGNAL		•		NaN	AVG			0 UTC 0 UTC
		Sats CAN SIGNAL		•		O NaN I∞	AVG 12			0 Sats 12 Sats
		VBOX_2 CAN MESSAGE VBOX_3		¢		0		Receive		
		CAN MESSAGE		÷				Receive		
		CAN MESSAGE		¢		0		Receive		
		CAN MESSAGE		÷				Receive		
		VBOX 7		÷				Receive		
	H	VECTOR_INDI	ENT_SIG_MSG	• •				Receive		
		CAN 2	VN1610 Channel 2	•				FD		
		CAN 2	VN1610 Channel 2	_						

Fig. 4.56: CAN-FD channel list in OXYGEN

Note: For more details about CAN-channels in OXGYEN, refer to CAN Input Channels.

Offline decoding of CAN-FD:

• It is possible to add additional channels that shall be decoded during the data analysis. Therefore, open the respective CAN-FD port in the channel list and load the dbc-file again. Additional channels can be selected and decoded now.

Note: It is not possible to delete previously recorded and decoded channels from a data file.

CAN-FD Bit Timing - Port Configuration

The CAN-FD Bit Timing option is included since OXYGEN R5.1.1

Note: This is an advanced feature and not intended to be changed for the normal CAN-FD data acquisition.

Different Bit Timing per Sample point can be selected from a predefined table for the baud rate and the baud rate high in the CAN-FD port configuration:

			Select CAN Bit Timing							
			Sample Point	BTL	Seg1	Seg2				
			50.0%	10	4	5				
			50.0%	16	7	8				
			50.0%	20	9	10				
			50.0%	32	15	16				
			50.0%	40	19	20				
			50.0%	80	39	40				
CAN 1	SN:514934		50.0%	160	79	80				
VN1610 Channel 1	CAN 1		50.7%	160	80	79				
			51.3%	80	40	39				
PORT CONFIG			51.3%	160	81	78				
Baud rate 500	0000 Ba	aud	51.9%	160	82	77				
			52.5%	40	20	19				
Sample point 50%	6, Seg1: 4, Seg2: 5, BTL: 10		52.5%	80	41	38				
			52.5%	160	83	76				
Baud rate high 100	00000 Ba	aud 📕	53.2%	32	16	15				
Sample point high 50%	6, Seg1: 4, Seg2: 5, BTL: 10		53.2%	160	84	75				
	, , , , ,		53.8%	80	42	37				
Listen only Fal	lse		53.8%	160	85	74				
Listen only			54.4%	160	86	73				
Timestamp AD	Sample Rate		55.0%	20	10	9				
			55.0%	40	21	18				
Load DBC	Clear all		55.0%	80	43	36				
FRAME PREVIEW			55.0%	160	87	72				
			55.7%	160	88	71				
Message ID:			56.3%	16 32	8	7				
7 6 5	4 3 2 1	0	56.3%	32	17	14				
			20 540	80	44					
				Ca	ncel	→Ok				

Fig. 4.57: CAN-FD Bit Timing selection

CAN-FD Bit Timing - CAN(-FD) samplepoint

The sample point is the location (percent value), inside each bit period where the CAN controller looks at the bus state to determine if it is a logic 0 or logic 1. OXYGEN allows this point to be configured. It is specified as a percentage from the start of the bit period.

The location of the sample point is a trade-off. An early sample point decreases the sensitivity to oscillator tolerances and allows lower-quality oscillators. A late sample point allows for a longer signal propagation time and therefore a longer bus. A later sample point is useful for non-ideal bus topologies.

Due to the two different baud rates CAN-FD uses, the importance of a correct sample-point-setup along all bus-participants is of increased importance. (http://www.bittiming.can-wiki.info/ and https://kb. vector.com/entry/861/)

OXYGEN choses a default sample-point of 70 %, (please note, that all bus-timings are realized in hardware by integer clock-dividers for the base clock of 80 MHz, not every value can be met exactly)

As mentioned above, the sample point is a trade-off, and thereby different buses may be designed to choose a sample-point-setup different to 70 % to satisfy other constraints or needs.

To allow interaction with a wide range of such busses, OXYGEN allows to configure the sample-point for both baud rates.

Generally, a range of 50 % \leq sample-point \leq 97.0 % is considered, in 0.1 % steps.

Due to the clock-generation and segment-timing generation using integer clock-dividers with their own constraints not all values are possible for all baud rates.

Note: For details about the constraints of the parameters see XL_Driver_Library_Manual_EN.pdf

On the other hand, this also means, that various equal sample-point-values can be achieved by several different divider-settings.

Eg. 70.1 % @ 500 kBd can be achieved by 5 different divider settings.

Additional to the sample-point the time-quanta-values for 2 relevant segments are represented in the table. This allows easy matching if the time-quanta-values of the bus-participants is known.

- All lengths in timequanta (the smallest unit for all configuration values)
- BTL denotes the length of the Propagation_Delay_Segment + Phase_Segment_1 + Phase_Segment_2 + 1
- Seg1 denotes the length of Propagation_Delay_Segment + Phase_Segment_1
- Seg2 denotes the length of Phase_Segment_2
- The samplepoint is [(Seg1 + 1) / BTL]

If the baud rate changes, the bit timing parameters (sample point and prescaler) will automatically be adjusted to the best matching values.

4.7.4 Channel Setup for FlexRay channels

• Open the OXYGEN Channel List. The Vector Hardware channels will be visible in the section *VNxxxx* of the Channel List (marked red in Fig. 4.58).

Fig. 4.58: Channel List with Vector VN hardware included

- Click on the Gear button to open the Channel settings (marked blue in Fig. 4.58). Click on the *Load Fibex...* button to select the proper fibex-file (see Fig. 4.59).
- The fibex file must be compatible with Fibex 2.0 to 4.1.2 Standard for description file (ASAM MCD-2 NET)

(hannel :	Color Setu		Flexkay Sim U
LocalNode			PORT CONFIG	
V DEWE2-A4			Load Fibex	Clear all
TRION-1820-M	JLTI-4-D		FRAME PREVIEW	
Al 1/1 Sim	TRION-1820-MULTI-4-D	¢	Cycle	
Al 1/2 Sim	TRION-1820-MULTI-4-D	¢	Slot	
Al 1/3 Sim	TRION-1820-MULTI-4-D	¢		
Al 1/4 Sim	TRION-1820-MULTI-4-D	¢		
> CNT 1/1 Sim		\$		
> CNT 1/2 Sim		礅		
BoardCNT 1/1 BoardCNT 1/1	1 Sim TRION-1820-MULTI-4-D	¢		
CAN 1/1 Sim CAN 1/1	TRION-1820-MULTI-4-D	¢		
Simulated Enclos	ure			
Simulated Devi	ce			
FlexRay Sim	0	¢		

Fig. 4.59: FlexRay channel settings

• After loading the fibex-file, a Channel picker dialog (see Fig. 4.60) will open to select the channels from the fibex file that shall be decoded during data acquisition. It is possible to select only certain channels and messages or all channels.

🛆 Oxygen													-		×
	.ocalNode	DEWE2-PA7													
	Â	IDMA Enclosu	Select	t Cha	nnels										
0	Sim	nulated Enclo		_	ter_Example.xml			Search			- 14				
8			₿×	<	>										
4				~	pdu1000_0										
•					SIG2					0 65535					
					SIG3					0 65535					
	Analog D	Digital		~	pdu1000_1								_	_	
		Cha			SIG4					0 65535		9	icaling		+
	Simulate	d Enclosur			SIGS					0 65535					Advanced
		Ray Sim 0		~	pdu346										
					SIG1					0 65535					
				~	pdu347										
					SIG6					0 65535					
				•	pdu348										
								Cancel	ı	Ok					
-	+ -	•	ġ.)=(

Fig. 4.60: Channel Picker dialog

- To select additional channels later on, just reload the fibex-file and pick more channel In the channel picker dialog. The *Clear all* (Fig. 4.59) buttons deletes the current channel selection.
- After loading the fibex-file, an arrow positioned left to the Channel name will appear. A click on the Arrow will expand the FlexRay channel list and show the individual FlexRay messages including their channels (see Fig. 4.61).

Analog Counter CAN FlexRay Sea	irch	FlexRay Sim 0	FlexRay Sim 0
	Color Setup	PORT CONFIG	
✓ LocalNode			
DEWE2-A4		Load Fibex	Clear all
TRION-1820-MULTI-4-D		FRAME PREVIEW	
Simulated Enclosure		Cycle	
Simulated Device		Slot	
FlexRay Sim 0 PecRay Sim 0	•		
▼ pdu1000_0	۵		
SIG2	e		
SIG3	¢		
▼ pdu1000_1	Ø		
SIG4	¢		
SIG5	۵		
pdu346	Ø		
SIG1			
> pdu349	۰		
> pdu397	\$		
> pdu398	e		
> pdu624a	•		

Fig. 4.61: FlexRay channel list in OXYGEN

Offline decoding of FlexRay:

• It is possible add additional channels that shall be decoded during the data analysis. Therefore, open the respective FlexRay port in the channel list and load the fibex-file again. Additional channels can be selected and decoded now.

Note: It is not possible to delete previously recorded and decoded channels from a data file.

Limitations of FlexRay in OXYGEN:

- No support of ARXML (AUTOSAR XML) description files
- No support of Multiplexed Frames
- No bus settings possible Auto Detection Enabled
- No support of STRING channels
- No support of different scaling types of one signal depending on range

CHAPTER

MEASUREMENT SETTINGS

The Measurement Settings menu contains all settings which apply to a measurement itself and must be stored in a setup file. The different sections will be explained in the following chapters. To jump to the system options settings, click on the link *Jump to system options*, seen in Fig. 5.1.

\$	Measurement Settings
:=	Analysis Files
E,	File History
	Settings
0	Multi-file
¥	Header Data
▶	Nodes
	Sync Setup
	Security
	Configuration Lock
	Reset to defaults
	Jump to system options

Fig. 5.1: Measurement Settings section

Note: A single click on any menu button will show a small view of the menu that contains the most important functionalities and information. Keeping the left mouse button on the menu button pressed and moving the mouse to the opposite side of the screen will expand the menu to the full screen and show all options.

©	Measurement Set	tings
41 ID	RECORDING	
:=	Filename:	8kW_synchronoL
0	File size:	986736 KB
	Start time:	2022-01-05 15:27:
E.	Timezone:	Europe/Berlin U
Ŧ	Duration:	000 d 00:00:09.74:
►	Save active recorder region	
	HEADER DATA No custom header data fields de	fined.

Fig. 5.2: Measurement Settings in OXYGEN viewer

Opening the small sidebar measurement settings menu of a recorded file in OXYGEN viewer enables the *Save DMD as...* button. Here it is possible to save only a time slice of the measured data. For more information see *Export active recorder region or between cursors*.

All settings can be reset by clicking on the button Reset to default, on the left seen in in Fig. 5.3.

The content of the individual submenus will be explained in the following sections in detail.

🛆 0×	YGEN		-	×
\$	Measurement Settings	Multi-file		
	Settings	MULTI-FILE Enable multi-file recording		
E.	Multi-file	Split by duration		
	Header Data	Split every <u>10</u> , s		
	Nodes			
4	Sync Setup	Split by number of recording events Number events per file _1		
	Security			
	Configuration Lock	Split by absolute time First split Dienstag, 14. Dezember 2021 09:59:10 (UTC +1)		
-	Reset to defaults	Split every 1		
	Jump to system options	Create subfolder		
				Ĩ

Fig. 5.3: Measurement Settings menu

Measurement Settings	Analysis Files		
Analysis Files	Filename: Measurement_10-12-21_001.dmd	0	
File History	Recording time: 2021-12-10 12:03:54.549 (UTC+1)	000 d 00:00:02.168	
Settings	59 channels		
Multi-file	Add file		
Header Data			
Nodes			
Sync Setup			
Security			
Configuration Lock			
Reset to defaults			
Jump to system options			

Fig. 5.4: Measurement Settings menu in PLAY Mode

5.1 Functions in PLAY mode

5.1.1 Analysis Files

This section is only available in PLAY mode, i.e. only when a measurement file is opened with OXYGEN, as seen in Fig. 5.4.

It shows some information about the currently opened measurement file. By clicking on the button Add file... multiple files can be opened. For more information, refer to Opening multiple data files.

5.1.2 File History

This section is only available in PLAY mode, therefore only when a measurement file is opened with OXYGEN, as seen in Fig. 5.4.

In this section it is possible to apply changes made to a measurement file in the post-processing to other files. For more information, refer to *Batch processing*.

5.2 Settings

5.2.1 Multi-File

Especially during long measurement campaigns, it might be useful if data is not stored to one single file but to several individual files. Among others, this mechanism allows the user to analyze and post-process data from the beginning of the measurement while the measurement itself is still running. This mechanism is called multi-file recording.

If multi-file recording is enabled, OXYGEN supports three different ways to split files:

- Split by duration
- Split by number of recording events
- Split by absolute time.

🛆 * u	insaved - OXYGEN		-	×
\$	Measurement Settings	Multi-file		
	Measurement Settings Settings Multi-file Header Data Nodes Sync Setup Security Configuration Lock Reset to defaults Jump to system options	Multi-File Enable multi-file recording Split by duration Split by number of recording events Number events per file		
				\geq

Fig. 5.5: Multi-File recording settings

Multi-file recording

File names

Multi-file recordings are stored in a separate folder per default, which has the same name as the first multi-file. For more details about the file name pattern see *Storing and File name*.

To deactive the creation of a subfolder for multi-files, deactivate the slider in the multi-file settings (see Fig. 5.5). A separate multi-file counter (00x) is used if the individual file names are identical. With the optional text *File Start* in the *Time* placeholder, the timestamp of the recording start of each multi-file recording can be used.

Examples

#{Date, Local}_#{Number, Session}

The session counter is 3. Therefore, the multi-file recordings will have the following names: 20210503_003_001, 20210503_003_002, 20210503_003_003 etc.

#{Time, File Start, "hh-mm-ss"}

The multi-file recordings will have the following names: 09-55-29, 09-55-39, 09-55-49 etc.

Split by duration

If *split by duration* is selected, OXYGEN stores data automatically to a new file if the defined time interval is exceeded: A new data file will be created after 10 s, 2 0s, 30 s etc, overall recording time. The minimum time interval is 10 seconds.

Special case

Split by Duration in combination with enabled *event based waveform recording* and disabled *User Reduced Statistics recording* (see *Triggered Events*). With this combination, it can happen that no data is stored to a multi-file part. The following cases might appear:

• No data recording after arming the Trigger: If it takes a certain time after arming Trigger and the first occurring recording event, the time between arming the Trigger and the first occurring recording event will be rejected and the '0s' position will be shifted to the Arm Trigger position to the first occurring recording event. Thus, the first data file begins not at the position the Trigger is armed but at the position the first recording event occurs. The following Fig. 5.6 will illustrate this case:

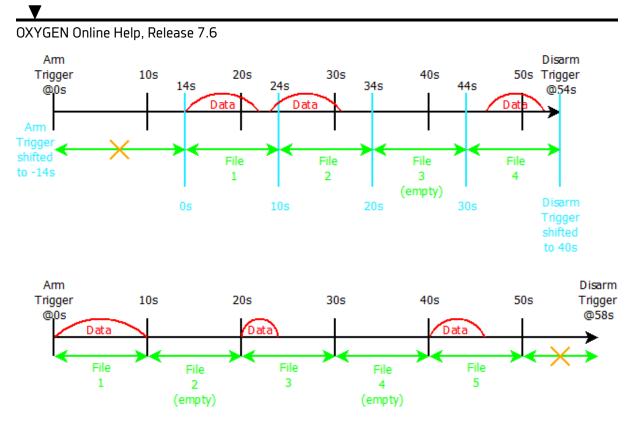


Fig. 5.6: Special case 1 for multi-file recording; split duration: 10s

- No data recording between two recording events: If the time between two occurring recording events is longer than the specified Split time interval, an empty data file created. (see File 3 in Fig. 5.6)
- No data between the last occurring recording event and disarming the Trigger: If it takes a certain time between the last occurring recording event and disarming the Trigger, the time within will be rejected and no new data file will be created. The following Fig. 5.7 will illustrate that case. This is also the reason why the Split Stop/Start Marker is only created retroactively if a new recording event occurs and not at the exact time the split duration is exceeded.

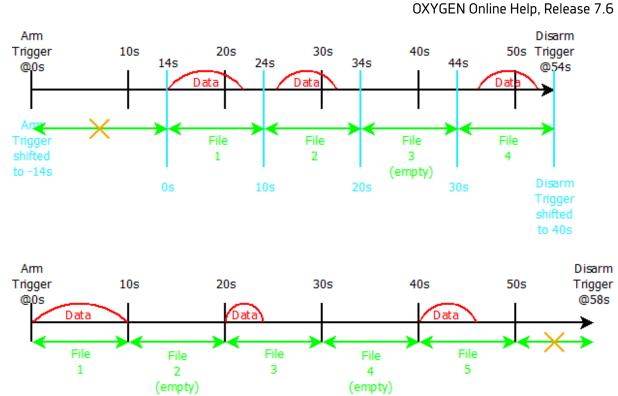


Fig. 5.7: Special case 2 for multi-file recording; split duration: 10s

Note: If *User Reduced Statistics* recording is enabled for the upper explained special case, this special case will not be applied, because (statistics) data will be recorded continuously.

Split by number of recording events

If split by number of recording events (see ③ in Fig. 5.5) is selected, OXYGEN creates a new data file if the defined number of recording events is reached. I.e. in the example of Fig. 5.5, a new data file will be created after the 2nd, 4th, 6th, ... recording event is terminated.

Special Case

If *Split by number of recording events* is used in combination with a pre-recording time which lasts back to the recording event that occurred before, both recording events will be regarded as one entire recording event, because they are connected by the pre-recording time. The following will illustrate this case for a recording split after two events:

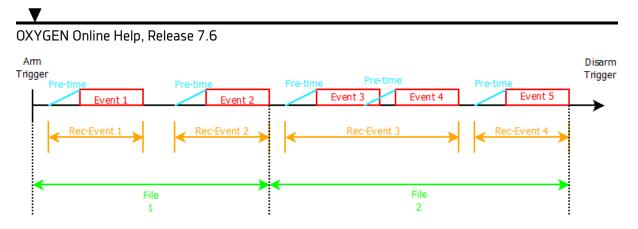


Fig. 5.8: Special Case 3 for multi-file recording; Split after 2 recording events

Note: The DejaViewTM functionality (see $DejaView^{TM}$) is applicable during multi-file recording as well. The instant of time a new data file is created is visible in the event List (see *Event List*) as Split Start and Split Stop marker (see Fig. 5.9).

Ø	Event List					
=	Event	l Time				
	Recording Start	0:00.00000000				
	Split Start	0:00.000000000				
	Split Stop	0:10.00000000				
	Split Start	0:10.000000000				
-	Split Stop	0:20.000000000				
F	Split Start	0:20.000000000				
-	Split Stop	0:30.00000000				
	Split Start	0:30.00000000				
-	Split Stop	0:30.635200000				
-	Recording Stop	0:30.635200000				

Fig. 5.9: Split Start and Split Stop Marker

Split by absolute time

If split by absolute time (see 4 in Fig. 5.5) is selected, OXYGEN stores data automatically to a new file after every defined time interval. The OXYGEN Acquisition Time is used as the reference time. The first split can be selected using the popup calendar.

 Split by abs First split 			13, 2020) 11:00:0	0 AM (U	TC +1)		
Split every Next splits	<	< March 2020 >						
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	
	23	24	25	26	27	28	29	
	1	2	3	4	5	6	7	
	8	9	10	11	12	13	14	
	15	16	17	18	19	20	21	
	22	23	24	25	26	27	28	
	29	30	31	1	2	3	4	
	Today							
	Time	Time 11			h_ : _0			
		Cano	el:		(Dk		

Fig. 5.10: Pop-up to select the first split

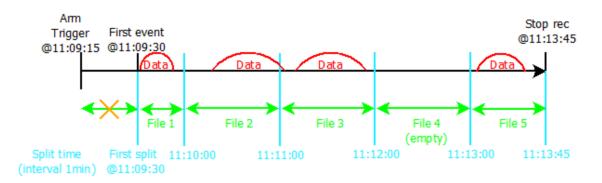
The files can be split after minutes, hours or days. The minimum interval for a split is one minute. After selecting the interval, a small preview of the next splits is shown in the settings in the multi-file section, also shown in Fig. 5.11. In that way the user can check if the settings are right.

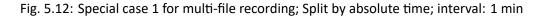
Split by abs	solute time
First split	Friday, March 13, 2020 10:11:05 AM (UTC +1)
Split every	1 h
Next splits	Friday, March 13, 2020 11:11:05 AM (UTC +1)
	Friday, March 13, 2020 12:11:05 PM (UTC +1)
	Friday, March 13, 2020 1:11:05 PM (UTC +1)

Fig. 5.11: Split options and split preview for split by absolute time

Special case

Split by absolute time in combination with enabled event based waveform recording and disabled User Reduced Statistics recording (see *Triggered Events*).


With this combination, it can happen that no data is stored to a multi-file part. The following cases might appear:


• No data recording after arming the Trigger

If it takes a certain time after arming Trigger and the first occurring recording event, the first file split will also occur with the first occurring recording event. Thus, the first data file begins not at the position the Trigger is armed but at the position the first recording event occurs. The first file can, therefore, be shorter than the defined interval. The next splits are done correctly according to the defined interval as shown in the split preview. This case is shown in Fig. 5.12.

• No data recording between two recording events

If the time between two occurring recording events is longer than the specified Split interval, an empty data file will be created. (see File 4 in Fig. 5.12)

• No data between the last occurring recording event and disarming the Trigger

If no recording event happens after disarming the Trigger, the files will be split and created, nonetheless, according to the defined interval until the stop button is pressed. This case is shown in Fig. 5.13.

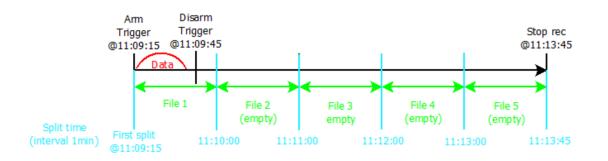


Fig. 5.13: Special case 2 for multi-file recording; Split by absolute time; interval: 1 min

Note:

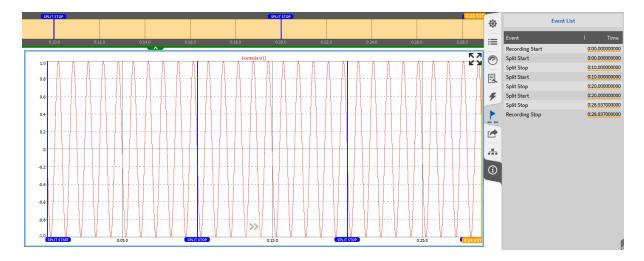
- If User Reduced Statistics recording is enabled for the upper explained special case, this special case will not be applied, because (statistics) data will be recorded continuously.
- Splits are only possible on rounded times, therefore only integer numbers can be used, e.g. 1, 2, ..., 5 etc. min/h/d. It is not possible to split files every 1.5 hours.
- If the first split lies in the past the next splits will be calculated correctly using the actual time.

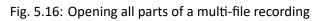
Loading a multi-file

Multi-file parts that belong to the same measurement are stored in the folder of the selected data storing folder (see *General settings*) or in a separate folder of the selected folder, if the option create subfolder is active. The individual multi-files are enumerated starting with 1.

To load multi-files, click on the Open Data File button (see Fig. 5.14) and select the desired multi-file data folder. The folder is named to the same manner as data files are named. Thus, a prefix can be freely defined, and the actual date and time is appended automatically to the folder name (see *General settings*).

Fig. 5.14: Open data file button


After selecting the correct folder, the single multi-files are shown in a list. The Info tab shows if the selected file(s) is (are) a part(s) of a multi-file-recording and the number of compatible parts selected (see Fig. 5.15). It is possible to open all parts (see Fig. 5.16), several parts (see Fig. 5.17) or only one single part (see Fig. 5.18) of a multi-file recording. The file selection can be done with the check boxes which are placed left to the file name. If several or all parts are opened, they are displayed in the correct chronological order.


▼

• OXYGEN Online Help, Release 7.6

D:/ Oxygen	MultiFile_Test	misc_20180315_1	125955					
		Name		I	Size		Date	
🔽 🛆 misc	_20180315_125	955_1.dmd			197.7 kB		2018-03-15 13:02	
🗹 🛆 misc	_20180315_125	955_2.dmd			197.8 kB		2018-03-15 13:02	
🗹 🛆 misc	_20180315_125	955_3.dmd			157.7 kB		2018-03-15 13:02	
Delete								
Info Channe	ls Headers							
Oxygen Version:	3.0 RC1							
Recording Start:	2018-03-15 12	:59:55 - Europe/Vie	enna UTC+1:00					
Duration:	000 d 00:00:10	0.000						
Max. Samplerate	e: 1000 Hz							
Multifile part:	Yes							
	3 compatible	parts selected						
					Cancel		Open	

Fig. 5.15: Opening a multi-file

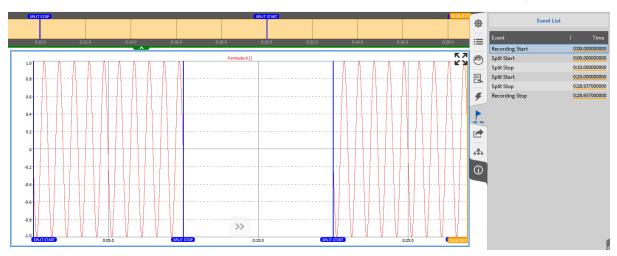


Fig. 5.17: Opening several parts of a multi-file recording

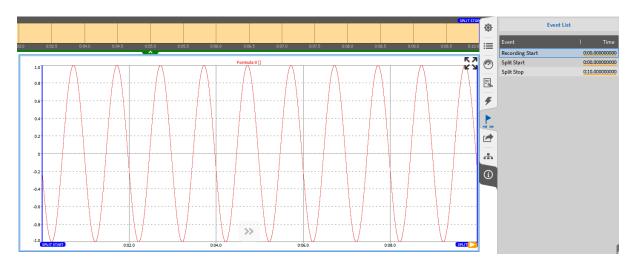


Fig. 5.18: Opening one part of a multi-file recording

If several parts are selected that are not part of a multi-file recording or don't belong to the same multi-file recording, an information will be displayed in the Info tab and the Open button will be disabled (see Fig. 5.19).

T

D:/ Oxygen MultiFile_Test						
Name	Size	Date				
misc_20180315_103044.dmd	116.0 kB	2018-03-15 10:30				
misc_20180315_102929.dmd	168.0 kB	2018-03-15 10:29				
misc_20180315_125955	-	2018-03-15 13:00				
misc_20180315_125934	-	2018-03-15 12:59				
misc_20180315_103221	-	2018-03-15 10:32				
misc_20180315_103105	-	2018-03-15 10:31				
misc_20180315_102735	-	2018-03-15 10:28				
misc_20180315_102615	-	2018-03-15 10:27				
Delete						
Info Channels Headers						
Oxygen Version: 3.0 RC1 Recording Start: 2018-03-15 10:30:44 - Europe/Vienna UTC+1:00 Duration: 000 d 00:00:04.762 Max. Samplerate: 1000 Hz						
Multifile part: No						
	Cancel	Open				

Fig. 5.19: Selection of non-compatible multi-file parts

If several multi-file parts are opened simultaneously and data shall be exported, data is exported to one file. If data of multi-file parts shall be exported to separate files, the multi-file parts must be opened and exported successively.

5.2.2 Header data

	Neasurement Settings	Header Data								
	Suttings	Type		Kane	1	Value	1	Prange	Nandatory	+
	Multi-file	Text		Company	, * DEWETRON		Never			-
1	Header Defa	Text	A	Cperator	, * , Vanual & Documentation		Recording			
	Nodes	Text		Verdon	, * ,Rd		, Recording t	hip _i		
	Sync Setup	Formula constant	A	Ranning spaced (span)	, * , 3030		, Never			-
	Security	Selection		, X	, * ,4		Never			
	Configuration Lock				feg		1			
					socand					
	Reset to defaults				1wth					
	Jump to ayolism options				and so on					
L										
1										

Fig. 5.20: Header Data – settings

The user can define Header Data here by clicking on the + in the upper right corner or remove it again by clicking on the – behind the respective header information. Two types of header can be defined: *Text header* and *Formula constant header*.

Text header

When Header Data is added, a name must be assigned to the certain header information and a description can be added. It can also be selected if the header information shall be prompted at the recording start or at recording stop (see Fig. 5.21). If this option is selected, the description of each Header Information can be changed there by the certain operator. If *Mandatory* is selected, the operator must fill in information in the respective Header Description at the recording start or stop. Otherwise the UI cannot be closed.

Header Data				
Name		Description		
Operator	= User Gu	uide		
Oxygen Version				
			Close	

Fig. 5.21: Header Data UI at the recording start or stop

Formula constant header

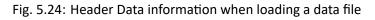
In addition, the user can define numerical header which can be further used in a formula for mathematical operations. After defining the header name and value, the header can be found in the math formulas for further processing (see Fig. 5.22). For details about formulas, refer to *Formula channel*. The prompt option is not available for numerical headers.

MATH FORMULA								
		Grou	p name _F	ormula				
\${Running Speed [rpm]}*'Torque'*2*pi								
Keader	7	8	9	+	,			
Running Speed [rpm]	4	5	6	x	/			
	1	2	3	+	-			
	(D	•	()			

Fig. 5.22: Processing numerical headers in formulas

When a data or setup file is loaded, the user can also look at the Header Data here to facilitate the search for the correct data file (see Fig. 5.22).

Selection header


Furthermore, the user can define a selection header which can be used such as a text header, but with multiple manually defined values. As with a text header, the selection can be prompted at the recording start or at recording stop. If this is chosen, a pop-up window will appear on recording start or stop and one value of the selection can be chosen from a drop-down menu.

Options for 'Tex	t Selection'	
	Value	+
first		, —
second		_
third		, —
fourth		—
and so on		, —
		Close

Fig. 5.23: Options for a selection header

In the options for a selection header a set of values can be defined (see Fig. 5.23). These can be text or numerical values.

Open Data File					
Data Folder	D:/ DATA				
>]_ D:/DATA	∃×	Name	1	Size	Data
System					Date
> 📫 C:/	✓ ▲ m_20210310_081904.dm	nd		1.0 MB	2021-03-10 08:19
> D:/					
> 🥪 V:/					
	Delete				New folder
	Info Channels Headers				
	Name			Descriptio	n
	Company		DEWETRON		
	Operator		Manual & Docu	mentation	
	Version		R5.5		
Browse				Cancel	Open

It is possible to add the Headers in a Text Box (refer to *Text instrument*) on the measurement screen.

Three different procedures exist for adding Headers in a Text Box:

• Select the desired Header information at the Header Name in the small view menu of the Measurement settings and add it by Drag and Drop to the Measurement Screen (see Fig. 5.26).

	÷	
	0	Filename preview:
Company: Dewetron	#	Testyyyymmdd_hhmmas.dmd HEADER DATA Company
	-	Dewetron Operator User Guide
	()	Oxygen Version 24

Fig. 5.25: Adding Header Data via drag and drop from the Measurement settings to the measurement screen

- Adding Header Data via drag and drop from the Measurement settings to the measurement screenHeader information can also be added to an existing Text Box by dragging and dropping it into it.
- Create a Text Box and go to its Instrument Properties. Created Header Data is there visible, too and can be added to the Text Box via a double click on the individual Header Data or via drag and drop

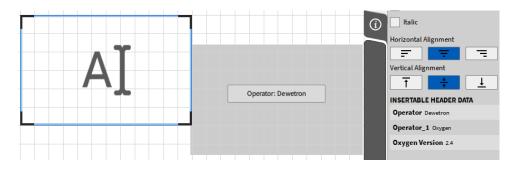


Fig. 5.26: Adding Header Data via drag and drop from the Text Box Instrument Properties to the measurement screen

• Create a Text Box and type in the Header Data Name according to the following syntax: ξ {Header Data Name} and the Header Data Description will show up in the Text Box (see Fig. 5.27).

	¢ ≣	Instrument Properties TEXT
Dewetron	Ø	\${Company} \${Operator} \${Oxygen Version}
User Guide		
2.4	4	
		Size Auto
	-	Color

Fig. 5.27: Adding the Header Description in a Text Box

5.2.3 Nodes

۵۰۵	insaved - OXYGEN		-	×
•	Measurement Settings	Nodes		
		Node Ther Autobio		
				×

Fig. 5.28: Nodes menu

Refer to OXYGEN-NET Menu – Nodes for more information.

5.2.4 Sync Setup

۵ ۱ ۵	insaved - OXYGEN					- D X
۲	Measurement Settings	Sync Setup				
	Settings	SYNC SETTINGS Auto setup				Internal: Locked
۵.	Multi-file					
4	Header Data	DEWE3-RM16				
F	Nodes	00000001 LocalNode				
	Sync Setup					
	Security					
	Configuration Lock					
2	Reset to defaults	SYNC IN Internal	SYNC OUT TRION (SYNC OUT)			
		SYNCHRONISATION IN	IPUT		SYNCHRONISATION OUT	PUT
		() Internal	O TRION (SYNC I/O) O IRIG	Connector: "SYNC"	
					 TRION (SYNC OUT) 	
		OPPS			Connector: "AUX"	
					None	Frequency (AUX)
						() =

Fig. 5.29: Sync settings

Refer to *OXYGEN-NET menu – Sync* for more information.

The following section provides information about the various synchronization options using OXYGEN with TRION hardware or the chassis controller. With DEWE2/3 instruments there is nearly no limit when synchronizing systems with each other. The synchronization of the devices is either done via an Internal 10 MHz clock, TRION-SYNC-BUS (SYNC I/O, SYNC OUT), IRIG, PPS, PTP/IEE1588, or GPS. The synchronization options depend on model and configuration of the DEWE3, instruments.

Fig. 5.29 displays the Sync Setup settings highlighting:

- the SYNCHRONIZATION INPUT section representing the input configuration of a device on how this instrument "gets" the input signal from any source or "generates" an input signal.
- the SYNCHRONIZATION OUTPUT section representing the output configuration of a device, which defines what kind of signal this instrument routes to the corresponding output to synchronize with the next connected device.
- the Sync Status Indicator providing information about the current synchronization status. For details on the different statuses, see OXYGEN-NET menu Sync, subsection Sync Status Indicator.

DEWE3 devices can either be synchronized via internal or external timing sources, which can further be forwarded to synchronize additional systems.

Internal Timing Source

Each DEWE3 chassis has an internal 10 MHz clock which is used as the clock source in this particular DEWE3 system. This internal clock is used per default for synchronization. Therefore, the *Auto Setup* box is checked per default and *Internal* selected as *Synchronization Input* Source (see Fig. 5.30).

Each DEWE3 chassis has an internal 10 MHz clock which serves as the default clock source for that system. Therefore, the Auto Setup box is enabled by default and *Internal* is selected as the *Synchronization Input Source* (see Fig. 5.30). When the internal clock is active, the sync status indicator in the upper-right corner of the synchronization menu appears grey, indicating local synchronization.

Sync Setup SYNC SETTINGS Auto setup			Internal: Locked 🐨
DEWE3-RM16 0000001 LocalNode SYNC IN SYNC OUT Internal TRION (SYNC OUT)			
SYNCHRONISATION INPUT		SYNCHRONISATION OUTPUT	
Internal O TRION (SYNC I/C) IRIG	Connector: "SYNC"	
○ PPS		• TRION (SYNC OUT)	
		Connector: "AUX"	
		None	O Frequency (AUX)

Fig. 5.30: Sync setup - internal sync clock selected

TRION-SYNC-BUS

In addition, each DEWE3 system can output the 10 MHz clock synchronization signal and forward it to another DEWE3 system via the SYNC In/Out connectors on the system (see Fig. 5.31). Note that this feature requires the OXYGEN-NET option.

Fig. 5.31: SYNC IN/OUT connectors of a DEWE3-A4

The SYNC IN connector receives the synchronization signal, while the SYNC OUT connector transmits it. Both connectors are equipped with green and red LEDs that indicate the current acquisition and clock status:

Table 5.1: LED indication of the SYNC OUT and SYNC IN connector

	SYNC OUT	SYNC IN
RED (stable)	Clock detected	Receiving clock
GREEN (stable)	Acquisition running	Acquisition running

To synchronize another DEWE3 system via the TRION-SYNC-BUS, the following Sync Settings must be applied to the receiving DEWE3: Uncheck the *Auto Setup* box and set the *Synchronization Input* source to TRION (SYNC I/O) (see Fig. 5.32). By default, TRION (SYNC OUT) is enabled and cannot be disabled.

NCHRONISATION IN	FOI		SYNCHRONISATION OUTPUT	
Internal	TRION (SYNC I/O)	⊖ GPS	Connector: "SYNC"	
			• TRION (SYNC OUT)	
) PTP		O PPS	Connector: "AUX"	
			None	Frequency (AUX)

Fig. 5.32: Sync setup – TRION-SYNC-BUS

External Timing Source

Depending on the hardware used, various external synchronization signals can be used. The following hardware options are available:

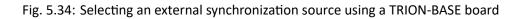
- Chassis controller of a DEWE3 device
- TRION-BASE module
- TRION-TIMING module
- TRION-VGPS module

Note: The TRION modules must be mounted in the first (Star) slot of the system.

	Input synchronization signal										
Devices	PTP/	GNSS			PPS		IRIG				
Devices	IEEE 1588	GPS	Gali- Ieo	Bei Dou	GLO- NASS	Rising Edge	Falling Edge	A DC	B DC	A AC	В АС
Chassis Controller	\checkmark	\checkmark	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	x	x
TRION-BASE	Х	х	x	x	x	\checkmark	x	х	\checkmark	x	х
TRION-TIMING	$\sqrt{1}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{1}$	\checkmark	\checkmark	\checkmark	\checkmark
TRION-VGPS	$\sqrt{2}$	\checkmark	x	Х	\checkmark	\checkmark	$\sqrt{2}$	\checkmark	\checkmark	\checkmark	\checkmark
				Οι	ıtput syr	nchroniza	ation sig	nal			
Chassis Controller	\checkmark	Х	x	Х	x	\checkmark	x	Х	\checkmark	x	Х
TRION-BASE	Х	Х	x	Х	x	x	x	Х	x	x	Х
TRION-TIMING	$\sqrt{1}$	Х	x	Х	Х	Х	x	Х	$\sqrt{1}$	Х	Х
TRION-VGPS	$\sqrt{2}$	Х	x	х	Х	х	x	Х	√2	Х	Х

The following Fig. 5.33 provides an overview about the supported external synchronization:

Fig. 5.33: Compatibility of TRION modules and synchronization source


1) TRION-TIMING-V3 required; 2) TRION-VGPS-V3 required

Synchronization with a TRION-BASE board

If a TRION-BASE board is mounted to the first system slot (Star slot), the system can be synchronized with an external IRIG-B-DC or a PPS signal (synchronization to the Rising signal edge).

To use either IRIG-B-DC or the PPS signal as synchronization signal, connect the signal to the IRIG input of the TRION-BASE board (PPS signal must be input as well via the IRIG connector). Uncheck the *Auto setup* box in the *Sync Setup* and select either *IRIG* or *PPS* in the *Synchronization Input* menu (see Fig. 5.34).

IRIG					
		Connector: "SYNC"			
s		 TRION (SYNC OUT) 			
O PPS					
	ms,	O None		Frequency (AUX)	
		Frequency	_100		н
		StartEdge	Risi	ng	
		ms,	Connector: "AUX" O None Frequency	ms Connector: "AUX" Mone Frequency	Connector: "AUX" O None Frequency (AUX) Frequency 100

The Sync indicator in the upper right corner of the menu will be

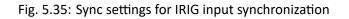
- Red, if no valid synchronization signal is connected to the SYNC I/O connector
- Orange, if a valid synchronization signal is connected to the SYNC I/O connector but the system is not locked yet (this might take some seconds and will be locked automatically)
- Green, if a valid synchronization signal is connected to the SYNC I/O connector and the system is locked.

The Sync indicator is available in the Action bar as well if the Sync Setup is closed (see 2 in Fig. 3.5).

Note: If an external synchronization signal is applied to the system, the signal can be forwarded via the TRION-SYNC-BUS (see *TRION-SYNC-BUS*) as well to synchronize other DEWE3 chassis.

In addition, the TRION-BASE board offers an AUX connector which can output a rectangular (LVTTL) signal to synchronize other devices, i.e. a GigE camera, to the TRION hardware clock. To do so, enable the *Frequency (AUX)* switch in the *Synchronization Output* setup (see Fig. 5.34). The *Frequency* can be set from 10 Hz to 10 MHz and the *Start Edge* can be the *Rising* or *Falling* signal edge.

Synchronization with a TRION-TIMING/VGPS board


When a TRION-TIMING or TRION-VGPS board is mounted to the first system slot (Star slot), in addition to TRION (SYNC I/O), multiple other synchronization options are available:

- I. IRIG (A-DC, A-AC, B-DC, B-AC)
- II. PPS (rising edge; falling edge requires TRION-TIMING/VGPS-V3)
- III. GNSS (VGPS supports GPS & GLONASS; TIMING supports GPS, GLONASS, BeiDou, Galileo)
- IV. PTP (requires TRION-TIMING/VGPS-V3)
- V. LVTTL
- I. IRIG

To use an IRIG signal as synchronization signal, connect the signal to the IRIG input of the TRION board. Uncheck the *Auto setup* box in the *Sync Setup* and select *IRIG* in the *Synchronization Input* menu. Go to the *IrigCode* drop-down menu and select the correct IRIG Code (see Fig. 5.35).

SYNCHRONISATION INPUT				SYNCHRONISATION OUTPUT				
◯ Internal	O TRION (SYNC I/O)	⊖ GPS		Connector: "SYNC				
ОРТР	• IRIG	⊖ PPS		TRION (SYNC OF	JT)			
CorrLimit	0.01		ms	Connector: "AUX" None	⊖ PPS	Frequency (AUX)		
IrigCode	CodeB_DC (B007) CodeA_AC (A127)		í	Connector: "PTP"	0	C requery (rest)		
	CodeA_DC (A007) CodeB_TTL (B007) CodeB_AC (B127)		- 1	None		ОРТР		
	CodeB_DC (B007)							

The TRION-TIMING/VGPS-V3 board also supports the output of an IRIG B-DC signal. This can be configured in section *Synchronisation Output -> Connector: "IRIG/BNC" -> IRIG* (see Fig. 5.36).

SYNCHRONISATION INP	TUT		SYNCHRONISATION OUT	PUT						
 Internal 	O TRION (SYNC I/O)	⊖ gps	Connector: "SYNC"							
О РТР		O PPS	TRION (SYNC OUT)	• TRION (SYNC OUT)						
			Connector: "AUX"	Connector: "AUX"						
			None	None PPS Frequency (AUX)						
			Connector: "IRIG/BNC"							
			○ None	None O IRIG						
			IrigCode CodeB_DC (B007)							
			Connector: "PTP"							
			None		РТР					

Fig. 5.36: Sync settings for IRIG output synchronization

Note: The IRIG/BNC connector on TRION-TIMING/VGPS-V3 boards can be used for IRIG input or output, but not simultaneously. Hence, dual IRIG input and output is not supported.

II. PPS

To use a PPS signal as synchronization signal, connect the signal to the IRIG connector of the TRION board (PPS signal must be input as well via the IRIG connector). Uncheck the *Auto setup* box in the *Sync Setup* and select *PPS* in the *Synchronization Input* menu (see Fig. 5.37). If the system shall be synchronized to the *Rising* signal edge, go to the *InvertedInput* drop-down menu and select *False*. If the system shall be synchronized to the *Falling* signal edge, go to the *InvertedInput* drop-down menu and select *True*.

Note: Only TRION-TIMING/VGPS-**V3** boards support PPS synchronization to the falling signal edge.

SYNCHRONISATION INF	PUT			SYNCHRONISATION OU	ITPUT	
◯ Internal	O TRION (SYNC I/O)	⊖ GPS		Connector: "SYNC"		
○ РТР		PPS	TRION (SYNC OUT)			
0111		0.45		Connector: "AUX"		
CorrLimit	0.01		ms	○ None	• PPS	O Frequency (AUX)
InvertedInput		Connector: "PTP"				
				None	0	PTP

Fig. 5.37: Sync settings for PPS synchronization
--

III. GPS

To use GPS as synchronization signal, connect the antenna to the GPS input of the TRION board. Uncheck the Auto setup box in the *Sync Setup* and select *GPS* in the *Synchronization Input* menu (see Fig. 5.38).

SYNCHRONISATION INPUT			SYNCHRONISATION OUTPUT					
◯ Internal	O TRION (SYNC I/O)	• GPS	Connector: "SYNC"					
ОРТР		○ PPS	TRION (SYNC OUT) Connector: "AUX"					
CorrLimit	0.01	ms,	None	OPPS		O Frequency (AUX)		
			Connector: "IRIG/BNC"					
			None					
			Connector: "PTP"					
			None		ОРТР			

Fig. 5.38: Sync settings for GPS synchronization

Note: In this context, the term GPS refers to all GNSS sources. The source ultimately used depends on the available signal and the antenna.

IV. PTP/IEEE 1588

To use a PTP signal as synchronization signal, connect the signal to the PTP input of the TRION board. Uncheck the *Auto setup* box in the *Sync Setup* and select PTP in the *Synchronization Input* menu (see Fig. 5.39).

SYNCHRONISATION INPUT	SYNCHRONISATION OUTPUT					
◯ Internal	O TRION (SYNC I/O)	O GPS Connector: "SYNC"				
• PTP		○ PPS	• TRION (SYNC OUT)			
PIP		OPPS	Connector: "AUX"			
CorrLimit	.0.01 ms,		None	O PPS		O Frequency (AUX)
DelayMechanism Domain	<u>End To End</u> رە (_DFLT 224.0.1.129)		Connector: "IRIG/BNC"			
Protocol	UDP_IPv4		None			

Fig. 5.39: Sync settings for PTP input synchronization

Note: If an external synchronization signal is applied to the system, the signal can be forwarded via the TRION-SYNC-BUS (see *TRION-SYNC-BUS*) as well to synchronize other DEWE3 chassis.

TRION-TIMING/VGPS-V3 additionally supports PTP out. Thus, a DEWETRON measurement device can also be used as a PTP master to synchronize other devices via PTP. To do so, on the PTP Master use the PTP connector as the output source and connect it to an additional input port. Uncheck the Auto setup box in the Sync Setup and select PTP in the Synchronization Output menu (see Fig. 5.40).

SYNCHRONISATION IN	IPUT		SYNCHRONISATION OUT	SYNCHRONISATION OUTPUT				
• Internal	O TRION (SYNC I/O)	⊖ gps	Connector: "SYNC"					
О РТР		O PPS	TRION (SYNC OUT)					
				Connector: "AUX"				
			O None	• PPS	PPS Frequency (AUX)			
			Connector: "IRIG/BNC"					
			None	0	IRIG			
			Connector: "PTP"					
			○ None	O None O PTP				
			DelayMechanism		End To End			
			Protocol		UDP_IPv4			

Fig. 5.40: Sync settings for a PTP input synchronization

PTP input and output use the same connector on TRION-TIMING/VGPS-V3 boards. Hence, simultaneous use of PTP input and output is not possible.

V. LVTTL output

In addition, the AUX connector of the TRION-TIMING/VGPS modules can output a rectangular (LVTTL) signal to synchronize other devices, i.e., a GigE camera, to the TRION hardware clock. To do so, enable the Frequency (AUX) in the Synchronization Output setup (see Fig. 5.35). The Frequency can be set from 10 Hz to 10 MHz and the Start Edge can be the Rising or Falling signal edge. For the AUX output to fully work, the "Use Chassis Controller for Sync" option must be set to false.

Synchronization with a Chassis Controller of any DEWE3 system

The chassis controller of any DEWE3 system supports a range of external synchronization options, similar to the TRION-TIMING/VGPS modules. These include IRIG, PPS, LVTTL, PTP, and GPS signals.

For IRIG and PPS synchronization, the connection must be made through the digital I/O connector. Use pin 8 for input signals and pin 24 for output signals (see Fig. 5.41 for the entire connector pinout). Because input and output are assigned to separate pins, the chassis controller is capable of handling simultaneous IRIG input and output. In addition to IRIG/PPS output, pin 24 can also be configured to emit a rectangular LVTTL signal. This is useful for synchronizing external devices such as GigE cameras. The output frequency of the LVTTL signal is configurable and can range from 1 Hz to 10 MHz.

Note: To use IRIG and PPS at the chassis controller, the hardware option DEWE3-OPT-IRIG/PTP is required.

OXYGEN Online Help, Release 7.6 13 GND 25 12 GNE IRIG/PPS output AUX output 24 GNI 11 23 DO4 10 DO 22 DO2 9 DO: GND 21 8 IRIG/PPS input DI8 CNT4 input A GND 20 7 CNT3 input A DĽ GND 19. 6 DI6 CNT2 input **GND** 18 5 DI5 CNT2 input GND 17 4 **GND** 16 3 GND 15 2 GND 14 1 AUX output Digital input IRIG/PPS Counter input Digital output GND Power

Fig. 5.41: DIO pinout of chassis controller

To synchronize the system using GPS, simply connect the GPS antenna to the corresponding GPS input on the chassis controller. Uncheck the *Auto setup* box in the *Sync Setup* and select *GPS* in the *Synchronization Input* section.

Note: To use the GPS input at the chassis controller, the hardware option DEWE3-OPT-GPS is required.

PTP synchronization is also supported and uses a dedicated connector on the chassis (see Fig. 5.42). Since this connector is used for both input and output, the chassis controller can function as either a **PTP slave** or a **PTP master**.

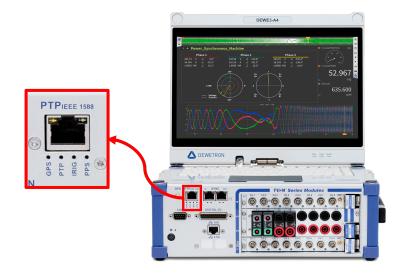


Fig. 5.42: PTP connector on chassis

Note: To use the PTP input at the chassis controller, it requires the hardware option DEWE3-OPT-IRIG/PTP. In addition to use the PTP Master option requires the software license OXY-OPT-PTP-OUT in combination with the firmware version >R6.6.1. Further note that this option is not available in EVALUATION mode.

The process for configuring these synchronization signals follows the same general steps as described for TRION-TIMING/VGPS modules. For detailed setup instructions, refer to the corresponding sections.

General remarks on PPS, IRIG and PTP synchronization

- PPS is the abbreviation for Pulse Per Second. PPS signals provide one pulse per second whose Rising or Falling Edge is used for data synchronization.
- PPS signals are usually provided by GPS receivers or IMUs, i.e. GeneSys ADMA's or OxTS RT's
- PPS signals may look like the following:

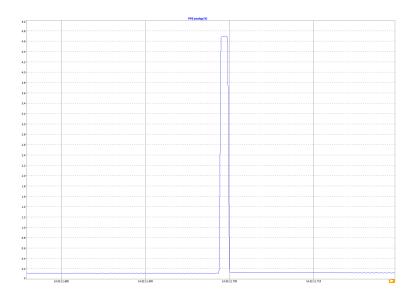


Fig. 5.43: PPS signal - example 1

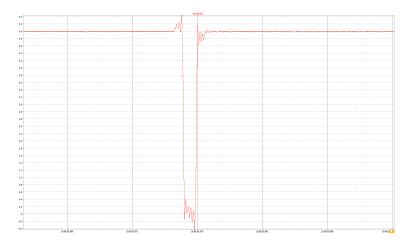


Fig. 5.44: PPS signal - example 2

- The IRIG timecode is used to control a PLL, which is then used as the system time base.
- The IRIG connector also has an indication LED flashing either green or red

Fig. 5.45: IRIG connector; detailed view

• The IRIG LED has the following indication:

	OFF	ON	Description
GREEN (flashing)	20 %	80 %	SYNC IN not available
RED (flashing)	80 %	20 %	SYNC detected, not locked
Green (flashing)	80 %	20 %	SYNC detected and locked

Table 5.2: IRIG-LED indication

- PTP is the abbreviation for Precise Time Protocol and is a protocol for clock synchronization throughout a computer network.
- PTP is defined in the IEEE 1588 standard.

5.3 Security

Configuration lock

\$	Measurement Settings	Configuration Lock	
		CONFIGURATION LOCK	
:=	Settings	Channel list	
0	Multi-file	Recording stop	
	Header Data	Measurement screen design	
ii,	Nodes	Save setup	
Ŧ	Sync Setup	Recording settings	
	Security	Sensor database	
	Configuration Lock	Set/modify password	No password set
		Remove lock	
	Reset to defaults		
-	Jump to system options	Lock	
		Current session state: DISABLED	

Fig. 5.46: Security settings

In the Security menu, the user can log certain measurement setup and recording options against unauthorized or unwanted changes and protect the measurement setup. These settings are stored to the measurement setup.

If this option is enabled, the settings are automatically locked after loading the setup.

The following functionalities can be locked:

- Channel List: Protects all settings in the Channel List (see *Data channels menu*). If this option is enabled, the Channel List settings can only be viewed. To edit the settings, the setup must be unlocked by entering the correct password. The password must be entered in the *Security* tab of the *Measurement settings*. Additionally, no acquisition restart will be made when switching between measurement screen and channel list.
- Recording Stop: A password has to be entered to stop or pause a recording based on a measurement setup that has this option enabled. A popup will open to enter the password after pressing the stop or pause button.
- Measurement Screen design: If this option is enabled, a password has to be entered to access the Design Mode (see Adding an instrument to the measurement screen and channel assignment), to change the instrument's channel assignment, axes scaling or their instrument properties. The password must be entered in the Security tab of the Measurement settings.
- Save Setup: If this option is enabled, a password has to be entered to save changes on the measurement setup. A popup will open to enter the password after pressing the save setup button.
- Recording Settings: If this option is enabled, a password has to be entered to edit the *Data Storing* and *Multi-File* settings (in *Measurement settings* see *General settings*) and the settings in the *Triggered Events* menu (see *Triggered Events*). The password must be entered in the *Security* tab of the *Measurement settings*. Additionally, no acquisition restart will be made when switching between measurement screen and channel list.
- Sensor database: If this option is activated, a password must be set as before. This means that the sensor database can no longer be edited unless the lock has been removed in the security menu.

To activate the lock of certain setup settings, proceed the following steps:

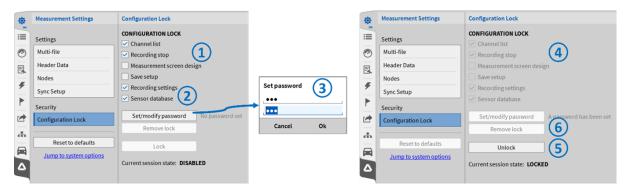


Fig. 5.47: Activation setup lock

- Select the settings that shall be locked (see (1) in Fig. 5.47).
- Press *Set/modify password* (see 2) in Fig. 5.47).
- Enter the password and confirm it (see (3) in Fig. 5.47).
- The selected settings will be locked afterwards (see (4) in Fig. 5.47).
- To unlock the settings again, press the *Unlock* button and enter the password (see (5) in Fig. 5.47).
- To remove the lock from the setup again, press *Remove lock* in the unlocked state (see 6) in Fig. 5.47).

CHAPTER

OXYGEN SETUP

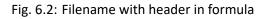
The OXYGEN Setup menu contains all settings which affect software settings and will be stored in the registry. These settings are saved per default and do not have to be saved in a setup file.

The content of the individual submenus will be explained in the following sections in detail.

6.1 General settings

6.1.1 Storing and File name

CIVISEN					-	
Oxygen Setup	Storing & Filename					
Storing & Filename	DATA STORING Data folder					
Startup Settings	c/DATA/Data/			Browse		
Advanced Settings	RECORDING FILENA					
Hardware		ens (SMMyyyy")_#(Time, File !	and This may start			
DAQ Hardware		100 mar 100	and internet (
Amplifier / R5232 / R5485	Time, Local	Date, Local	Counter, Local			
Sensors	Time, UTC	Date, UTC	Counter, Session			
Remote Control	Time, hh-mm-ss	Date, dd-MM-yy				
Remote Control	1-1-11	1949-12				
User Interface	Filename preview 23032022_11-33-16.30					
Localization	Warning: Existing file	s with the same name wi	I be overwritten			
UI Options						
Advanced Graphics	Ask for filena	me before recording star				
System Information	C Comment	ed files in Oxygen Viewer				
Component Versions	C C C C C C C C C C C C C C C C C C C	en mer in onligen mener				
Plugin Overview						
License						
Developer						
QML Sandbox						
Quit to OS						
Shutdown System						
Jump to measurement settings						


Fig. 6.1: System settings - overview

- Data storing: The folder to which data shall be stored, a prefix for data-filename and a folder to which data shall be exported can be specified here.
- Recording Filename: The user can use the file name pattern to set an individual file name. Different placeholders are available. Additionally, text can be entered to individually set a name for the datafile. The 4 different placeholders are the following:

- Time
- Date
- Number
- Header

Note: The header title must be written manually in the formula, which creates the data name. This file name formula cannot be changed during recording, see Fig. 6.2.

ECORDING FILENA	CORDING FILENAME			
n_#{Date}_#{Number, Local}_#{Header, "Weather Conditions"}				
me, Local	Date, Local 20230913	Counter, Local		
лс	Date, UTC 20230913	Counter, Session		
nh-mm-ss	Date, dd-MM-yy	Header		

Time

- Time, Local: the local time is used.
- Time, UTC: the UTC time is used.
- Time, hh-mm-ss: the time can be used in different formats.
- Hours [h], minutes [m], seconds [s] and milliseconds [z] can be arranged individually. As separator
 [-.] can be used, e.g. ss-mm-hh", "mm_hh", "ssmmhh".

Note: The text File Start can be added, in order to guarantee the individual recording start for multi-file recordings. Example: #{Time, File Start, "hh-mm-ss"}.

Date

- Date, Local: the local date is used.
- Date, UTC: the UTC date is used.
- Date, dd-MM-yy: the date can be used in different formats. Day, month and year can be arranged individually. As separator "-" or none must be used, e.g. "yy-MM-dd", "dd-MM", "ddMMyy".

Note: The placeholder letter for month (M) is written in capitals, to distinguish it from the placeholder for minutes (m).

Note: The text *File Start* can be added, in order to guarantee the individual date of recording start for multi-file recordings. Example: #{Date, File Start, "dd-MM-yy"}.

To specify a file name before recording start enable the button Ask for file name before recording start.

Fig. 6.3: Ask for file name before recording start button

If this button is enabled, a pop-up window (see Fig. 6.4) will appear where the file name can be entered.

Note: The recording only starts by clicking on the *Record* button (marked red in Fig. 6.4) in the pop-up window after entering the file name.

C:/ DATA DATA		
Name	Size	Date
A m_20190905_221939.dmd	4.0 MB	2019-09-05 22:19
A m_20190905_220846.dmd	3.5 MB	2019-09-05 22:08
Delete		
File type _ *.dmd		
	m_20190905_221939.dmd m_20190905_220846.dmd Delete File name _ m_20190917_081328.dmd	Image: m_20190905_221939.dmd 4.0 MB Image: m_20190905_220846.dmd 3.5 MB Image: m_20190905_220846.dmd 3.5 MB Image: m_20190905_220846.dmd 3.5 MB Image: m_20190905_220846.dmd 3.5 MB Image: m_20190917_081328.dmd 4.0 MB

Fig. 6.4: Pop-up window to enter the file name before recording start

To open a file right after recording stop in the OXYGEN Viewer, activate the button Open recorded file in OXYGEN Viewer. Therefore, the last recorded measurement file will automatically be opened right after recording stop in the OXYGEN Viewer. OXYGEN can then be used for the next measurement, while the last recording can be analyzed.

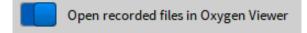


Fig. 6.5: Button, to open the recorded file right after recording stop

Number

- Counter, Local: this counter is persistent, meaning it will continue to increase also after OXYGEN or the whole system will be restarted. This counter can be reset by entering a desired number (e.g. 0) in the field for the Local Session Counter, see Fig. 6.1.
- Counter, Session: this counter is dependent on the OXYGEN session and will increase every time a new measurement is started. It will be reset if OXYGEN is closed and started again.
- Counter, Custom: this counter is a custom counter and must be adjusted manually to increase.

It is also possible to enter individual text in the text field. With these options it is possible to configure an individual name for standard or advanced use.

The filename preview shows the result of the configured file name.

6.1.2 Startup settings

🛆 dev	vetron_setup_20211215_090822.dms - OXYG	GEN -	- 0	×
٩	Oxygen Setup	Startup Settings		
:=	Storing & Filename	STARTUP BEHAVIOUR		
E.	Startup Settings	Oefault		
0	Advanced Settings	C Empty setup		
	Hardware	Last setup		
4	DAQ Hardware			
►	Amplifier / RS232 / RS485	O Load setup file my/Default_Setup.dms Browse		
	Sensors	my/beraut_setup.ams, Browse		
-	Remote Control			
	Remote Control			
	User Interface			
Δ	Localization			
	UI Options			
	Advanced Graphics			
	System Information			
	Component Versions			
_	Plugin Overview			
	License			
	Developer			
	QML Sandbox			:
	Quit to OS			
	Shutdown System			
	Jump to measurement settings			

Fig. 6.6: Startup Behaviour settings

The user can select if the default setup file, an empty setup file, the last setup file or a user defined setup file shall be opened when OXYGEN is started (see Fig. 6.6).

6.1.3 Advanced settings

Fig. 6.7: Advanced settings

- Instruments: In the Instruments section, DejaView[™] can be enabled/disabled. By default, DejaView[™] is always enabled. For a detailed description of DejaView[™] refer to *DejaView[™]*.
- Freeze Buffer: The minimum and maximum duration of the freeze buffer can be changed manually here by entering a duration of 0-100 s. By default, the length of the buffer depends on the set sample rate and varies between 1-20 s. WARNING: A manual increase of the freeze buffer leads to a higher load of the main memory. Change with caution! If decreasing the memory consumption is necessary, lower the maximum duration of the freeze buffer.
- System Time Synchronization: If an IRIG or GPS signal is received via a TRION-BASE (IRIG only), TRION-TIMING or TRION-VGPS module and if this signal is used for synchronization, the system time of the PC OXYGEN is running on can be set to this timing signal. For synchronization with an external timing source, refer to *External Timing Source*. The synchronization interval can be selected below and the minimum time interval is 10 seconds.
- Miscellaneous settings: Closing OXYGEN by shutting down the system can be prevented by one setting here. The second setting allows to suppress confirmation messages like saving or discarding changes. This has advantages in automated operation, but can lead to undesired behavior in manual operation. The third setting is activated by default and allows to save recorded measurement files in a compressed data format. The data type for both compressed and uncompressed measurement files is .dmd in both cases. With this setting the size of the measurement file can be reduced up to 30%. However, the use of the compressed measurement files leads to a higher system load, if the system load is too high, the function should be deactivated.

Note: OXYGEN must be started with Administrator rights to use the system time synchronization function as this functionality changes the system settings of the PC. If OXYGEN is started without Administrator rights but this functionality is activated, the error message *System time synchronization not allowed* (see Fig. 6.8) will be displayed in the lower right corner of the software. note that this setting is not stored to a dms-setup file but only to the registry.

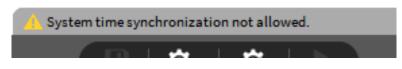


Fig. 6.8: Error message System time synchronization not allowed

6.2 Hardware

6.2.1 DAQ Hardware

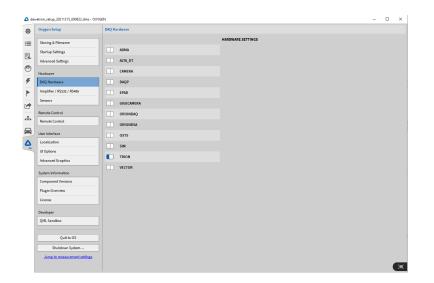


Fig. 6.9: DAQ Hardware settings

In the DAQ Hardware setup, the user can enable and disable the usability of different hardware series. For the detailed installing procedure of measurement hardware, refer to *Hardware setup*.

6.2.2 Amplifier / RS232 / RS485

🛆 ox	YGEN		_	×
٩	Oxygen Setup	Amplifier / R5232 / R5485		
=	Storing & Filename			
E.	Startup Settings	СОМЗ		
	Advanced Settings	COM4		
0	Hardware	DAQP / EPAD MODULES		
۶	DAQ Hardware			
	Amplifier / RS232 / RS485	Min Address 0		
1	Sensors	Max Address 31		
	Remote Control	PAD-D07 Support		
÷	Remote Control	Scan for modules		
	User Interface	Program module addresses		
Δ	Localization			
	UI Options	DAQP MODULES		
	Advanced Graphics	Output range 5V		
	System Information	EPAD POLLING SETTINGS		
	Component Versions	Simultaneous timestamps		
	Plugin Overview			
	License			
	Developer			
	QML Sandbox			
	Quit to OS			
	Shutdown System)=

Fig. 6.10: Amplifier / RS232 / RS485

For more information, refer to *Using EPAD2 with OXYGEN* for EPADs and *Using DAQP/HSI Modules with OXYGEN* for DAQP/HSI modules.

6.2.3 Sensors

OXYGEN offers the possibility of a sensor database to hold all relevant information about the user's sensors.

Oxygen Setup	Sensors										
Storing & Filename	Search				** :	_	_		_	_	_
Startup Settings	Name 1	Serial No.	l Sali		Input mode	Input Type	Inputrange	Excitation 1	LP Filter	Coupling	<u> </u>
Advanced Cettions	KMR 0-60 kN	ID 139133	Table scaled		Bridge	BRFULL	-3 milmV/V	SV		DC	3
Hardware	Krafta0-5 kN	ID 129299	Table scaled	Unit: N	Bridge	BRFULL	-3 mitmit/V	10 mA		DC	- 3
DAQ Hardware	Krafta50 kN	ID 129298	Table scaled		Bridge	BRFULL	-1 milmil/V	10 mA		DC	
Amplifier / #5232 / R5485	Wegs00mm	ID 137029	Table scaled		Current		-0.0202 A	01			
	"1" Dr10 bar	ID 072440	Table scaled		Current		-20 A 20 A	24V		DC .	
Sensors	"U" Dr10 bar	ID 072447	Table scaled		Voltage	Differential	-10 V., 10 V	247		DC	
Remote Control	Drehz0 RPM	ID 139138	Scale: 1 Offset:0	Unit: rpm	Voltage		-10 V., 10 V	🚺 or			
Remote Control	Strom240.A	ID 139137	Scale: 0.1 Ue Offset:0		Voltage		-5V5V	or 🚺		DC	
User Interface	Vakuu00hPa		Scale: 1 Offset:0	Unit: hPa	Voltage		-10 V 10 V	or 🚺		DC	
Localization	"U" Dr50 bar	ID 72450	Table scaled		Voltage	Differential	-10 V., 10 V	247		DC	
UI Options	"1" Dr60 bar	ID 136665	Table scaled		Current		-20 A 20 A	24V		DC	
Advanced Graphics	Krafta0-5 kN	ID 12507 2	Table scaled	Unit: N	Dridge	ORFULL	-3 mKmV/V	10 mA		DC.	
System Information											
Component Versions											
Errors and Warnings											
Plugin Overview											
License											
OXYGEN Features											
Developer											
QML Sandbox											
Quit to OS											
Shutdown System											
Jump to measurement settings											

Fig. 6.11: Sensor Database

The sensor database can be found in the System Settings and provides a comfortable user interface with familiar sub-menus.

To add a new sensor, click on the *Add sensor* button in the lower left corner (marked red in Fig. 6.11). The properties of the sensor are the same which are also available in the channel settings (for detailed explanation see *Changing the channel settings*). By clicking on the properties, a small pop-up window will appear as seen in Fig. 6.12 where the following parameters can be edited:

- Name: name of the sensor
- Serial No.: add the serial number of the sensor
- Scaling: add channel scaling or sensitivity; also 2-point, table or polynomial scaling is available
- Measurement Input Properties (required by the sensor)
 - *Input mode*: define the input mode which is required by the sensor; choose between Voltage, Current, Bridge, Resistance, Potentiometer, Temperature and IEPE
 - Input Type: define the input type (depending on the input mode the input type varies)
 - Input range: define the input range (depending on the input mode the input range varies)
 - Excitation: choose excitation (off, Voltage, Current) and corresponding value
 - LP Filter: add optional lowpass filter, define the frequency, order (2, 4, 6, 8) and type (Bessel or Butterworth)
 - Coupling: choose coupling mode
 - And Bridge-Input Specific Settings

Sensors				
Search				« — —
Name 🏻	Serial No.			Input mode
PNA-CLAMP-1000		Scale: 1000 Offset: 0	Unit: A	Current
SE-CUR-A110_A130	Channel Sca	ling		
PNA-CL000-DC	Scaling type	Scaling		
PNA-CLA150-DC	Scaling	Sensitivity		
PNA-CL800-DC	Unit A			
PNA-CLAMP-5	Unit A Scaling 100	00 A/A		
PNA-CLAMP-10/-20	Offset 0	A.		
SE-CUR1000-DC		A		
SE-CUR00-DC-S				
SE-CUR200-DC				
SE-CUR500-DC		Cancel	Ok	

Fig. 6.12: Sensor database – pop-up window to change channel scaling

To duplicate or remove a sensor simply click on the respective sensor and on the *Duplicate* or *Remove* button as marked red in Fig. 6.11.

By clicking on + Advanced (see Fig. 6.13) in the parameter bar the advanced menu will open, and more properties can be added:

- Bridge resistance
- Bridge Sensor Offset
- Bridge Shunt Target
- Shunt Resistance
- RTD Sensor Type

Fig. 6.13: Sensor database - open advanced menu

Bridge shunt target

The purpose of the bridge shunt target is to check Quarter Bridge, Half Bridge or Full Bridge wiring and determining the sensi-tivity loss due to cable resistance. By applying a known resistor to the internal completion resistor, a known bridge unbalance can be simulated. In case of ideal wiring the measured

unbalance will correlate exactly with the simulated unbalance. But in reality, cable resistance will decrease the measured value. By using the ratio between expected and measured unbalance this effect could be compensated.

The TRION(3)-18xx-MULTI measurement board supports a programmable shunt. The user can directly enter the "mV/V" or engineering unit within certain limits. The module calculates the appropriate resistor and applies it on demand. Sensor failures during test could easily be checked with this function. Simply compare the Shunt Cal result before and after the test run.

To apply a sensor to a channel, proceed with the following steps:

- Enter the channel settings by clicking on the little gear of the individual channel in the channel list (pushbutton (1) in Fig. 7.2 or Table 7.1, for details see *Changing the channel settings in the channel settings*.
- Click on the *Choose sensor* button in the upper right corner, seen in Fig. 6.14.

Choose sensor	« » x
SENSOR SCALING	
Scaling 2-point Table	
• Scaling Sensitivity	
Unit	
Scaling <u>1</u> V/V	
Offset 0 V Zero	

Fig. 6.14: Applying a sensor to a channel in the channel settings

- A pop-up window will appear with a list of all defined sensors seen in Fig. 6.15.
- Choose the desired sensor and click *OK*. The search field might ease the search for a specific sensor in the list.

Search				
Name	Serial No.	1	Scaling	
My Sensor 1	12345678	Scale: 1 Offset: 0		Unit: mA
My Sensor 2	123456789	Scale: 50 Offset: 0		Unit: A
	Cancel		Ok	

Fig. 6.15: Pop-up window to apply a sensor for a channel in the channel settings

- The parameters of the sensor will be applied on the channel. This can be recognized by the name of the sensor, which will be displayed in the channel settings and in the channel, list seen in Fig. 6.16.
- To remove an applied sensor from a channel simply click on the X button next to the sensor name in the channel settings (see Fig. 6.16).

	■ X My Sensor 1 (12345678)					
SENSOR SCALING						
Scaling 2-point Table Scaling Sensitivity	·					
Unit mA		Al 3/1 Sim				ø
		AI 3/1	My Sensor 1(12345678)		~
Scaling 1	mA/mA	AL 2 /2 C'			_	
Offset 0	mA _J Zero					

Fig. 6.16: Name of chosen sensor for the channel seen in the channel list and channel settings

Note:

- Only analog sensors, including XR modules, are supported in the database (no encoder).
- Whenever the database is changed, the sensors on the assigned channels do not update automatically and must be assigned again.
- An .xml file will be created with the sensor information, which can also be edited externally in a third-party software.

The name of the xml-file is *sensor_db.xml* and can be found in the following directory: %PUB-LIC%\Documents\Dewetron\OXYGEN.

It is also possible to transfer set sensors directly from the channel list to the sensor database or to overwrite existing sensors from the database (see Fig. 6.17).

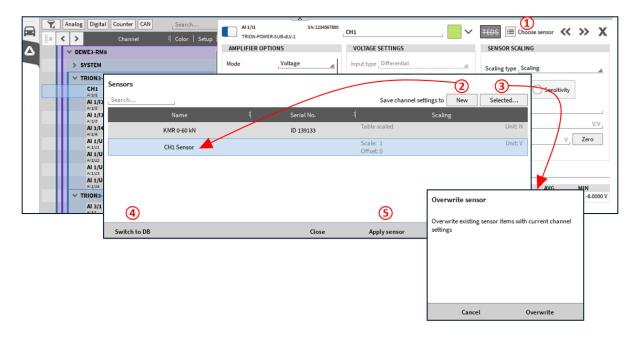


Fig. 6.17: Sensor database via channel list

No.	Function	Description
1	Choose sensor	Clicking on the button opens the sensor database. It is possible to select a sensor from the database in order to transfer the settings to the selected channel, or to create a new sensor in the database with the current settings of the selected channel or to overwrite an ex- isting one.
2	New	When you click on the "New" button, a new sensor is created in the sensor database according to the set- tings of the selected channel. An automatic name is assigned that corresponds to the channel name, this name can be changed later in the sensor database.
3	Selected	Overwrites the selected sensor in the list of the sen- sor database with the settings of the currently se- lected channel in the channel list. After clicking on the corresponding button, a window appears indicating that the existing data for the selected sensor will be overwritten after clicking on "Overwrite".
4	Switch to DB	Switch to the sensor database (see Fig. 6.17).
5	Apply sensor	After clicking on the "Apply Sensor" button, the set- tings of the selected sensor are applied from the sen- sor database to the selected channel in the channel list.

Table 6.1: Sensor database via channel list

6.3 Remote control

If remote control is enabled, the *Lock Screen* button will change to a *Remote Control* indicator and marks if OXYGEN is controlled by remote (see Fig. 6.18).

Fig. 6.18: Remote Control indicator

6.3.1 SCPI over Ethernet

\$	Oxygen Setup	Remote Control	
:=	Storing & Filename	Enable remote control	
0	Startup Settings	ACTIVE PROTOCOLS	CONFIGURATION
	Advanced Settings	SCPI over Ethernet	SCPI OVER ETHERNET
	Hardware	Simple Command Protocol Interface via TCP	Port number 10001
F	DAQ Hardware	Vendor: Dewetron	Override connection Disabled
	Amplifier / RS232 / RS485	Version: 1.21	
	Sensors	XCP over Ethernet	
	Remote Control	XCP slave protocol interface via TCP/UDP	
	Remote Control	Vendor: Dewetron Version: 1.6	
-	User Interface		
Δ	Localization		
	UI Options		
	Advanced Graphics		
	System Information		
	Component Versions		
	Errors and Warnings		
	Plugin Overview		
	License		

Fig. 6.19: Remote Control – SCPI over Ethernet menu

OXYGEN can be controlled by remote via SCPI. To do so, the *Enable remote control* button (see Fig. 6.19) must be switched on and *SCPI over Ethernet* must be enabled. The "override connection" setting "disabled" ensures that no other device can connect once a connection has been established.

For detailed instructions and programming examples, refer to the manual *OXYGEN Remote Control-SCPI Version Vx.x* which is available on the DEWETRON CCC portal (https://ccc.dewetron.com/).

For additional information about typical performance and other basic points, refer to Table 6.2.

6.3.2 XCP over Ethernet

Note: This is an optional feature and requires a license.

OXYGEN can be controlled via XCP over Ethernet. To do so, the *Enable remote control* button must be switched on and *XCP over Ethernet* must be enabled (see Fig. 6.20).

\$	Oxygen Setup	Remote Control	
:=	Storing & Filename	Enable remote control	
0	Startup Settings	ACTIVE PROTOCOLS	CONFIGURATION XCP OVER ETHERNET
	Advanced Settings	SCPI over Ethernet Simple Command Protocol Interface via TCP	Communication type TCP Server
ş	Hardware DAQ Hardware	Vendor: Dewetron	IP address
\mathbf{F}	Amplifier / RS232 / RS485	Version: 1.21	Port number 55555 Sample output format , Double (64Bit)
	Sensors	XCP over Ethernet XCP slave protocol interface via TCP/UDP	Path for A2L file C:\Users\Tklug\AppData\Local\Temp\oxygen.a2L
	Remote Control	Vendor: Devetron	Path for channel XML file _dug\AppData\Local\Temp\oxygen_channels.xml
-	User Interface	Version: 1.6	Send delay Enabled Discard telegrams0
	Localization		
	UI Options Advanced Graphics		
	System Information		
	Component Versions		
	Errors and Warnings Plugin Overview		
	License		())=

Fig. 6.20: Remote Control – XCP over Ethernet menu

Within OXYGEN, the following XCP settings can be edited:

CONFIGURATION

XCP OVER ETHERNET	
Communication type	TCP Server
IP address	127.0.0.1
Port number	55555
Sample output format	Double (64Bit)
Path for A2L file	C:\Users\Tklug\AppData\Local\Temp\oxygen.a2l
Path for channel XML file	C:\Users\Tklug\AppData\Local\Temp\oxygen_ch
Send delay	Enabled
Discard telegrams	0

Fig. 6.21: Configuration for XCP over Ethernet

- Communication Type: TCP server or UDP server
- IP address of the OXYGEN device
- Port Number
- Output format: Double (64bit) or Float (32bit)
- A2L File Path: The path the a2l-file is stored to. An a2l-file is automatically generated when XCP remote control is enabled and when OXYGEN is started
- XML File Path: The path the xml-file is stored to. A xml-file is automatically generated when XCP remote control is enabled and when OXYGEN is started
- Send delay: Can be set to enabled/disabled and refers to the number of telegrams discarded at the start.
- Discard telegrams: Can be set between 0 and 20 and defines the number of telegrams discarded at the start.

Note: Be aware that the directory *C:/Temp* the a2l-file and the xml-file is stored to is not created automatically. Create the directory *C:/Temp* manually or change the path to an existing directory.

A user instruction to setup a remote control via CANape can be found in the document *DEWETRON_OXY-GEN_XCP_User_Instructions_Vx.x* which is available on the DEWETRON CCC portal (https://ccc. dewetron.com/).

For additional information about typical performance and other basic points, refer to Table 6.2.

V

OXYGEN Online Help, Release 7.6

6.3.3 Usage SCPI and XCP simultaneously

It is possible to use the SCPI and the XCP plugin both simultaneously. Just enable both plugins and follow the instructions for SCPI from *SCPI over Ethernet* and the instructions for XCP in *XCP over Ethernet*.

As stated above, detailed and latest user manuals for both plugins are available on the DEWETRON CCC portal:

For detailed SPCI instructions and programming examples, refer to the manual OXYGEN Remote Control-SCPI Version Vx.x which is available on the DEWETRON CCC portal (https://ccc.dewetron.com/).

A user instruction to setup a remote control via CANape can be found in the document *DEWETRON_OXY-GEN_XCP_User_Instructions_Vx.x* which is available on the DEWETRON CCC portal (https://ccc. dewetron.com/).

6.4 Streaming interfaces

6.4.1 EtherCAT slave

Note: This is an optional feature and requires a license.

Using the EtherCAT slave subsystem, an OXYGEN system is able to provide timestamped periodic measurement values to an EtherCAT master. The most important control features as well as some status information are provided as well.

OXYGEN EtherCAT functionality currently only supports TRION-ETHERCAT boards.

For detailed instructions, refer to the manual *OXYGEN EtherCAT Slave Vx.x.* which is available on the DEWETRON CCC portal (https://ccc.dewetron.com/).

For additional information about typical performance and other basic points, refer to Table 6.2.

6.4.2 Data stream plugin

Note: This is an optional feature and requires a license.

The OXYGEN Data Stream plugin provides the following features:

- High Speed data access
- Efficient raw data transfer
- Multi data stream support
- Multi network port support
- Configurable via SCPI

Fig. 6.22: Data stream plugin – overview

For detailed instructions and programming examples, refer to the manual *OXYGEN CSV Plugin Vx.x* which is available on the DEWETRON CCC portal (https://ccc.dewetron.com/).

For additional information about typical performance and other basic points, refer to Table 6.2.

6.4.3 Ethernet sender plugin

Note: This feature is included in the installer by default.

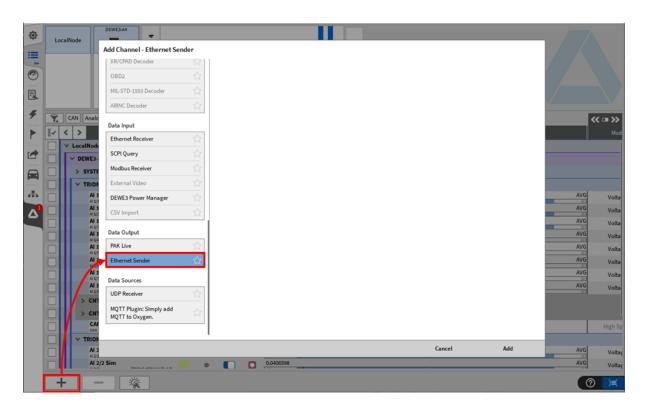


Fig. 6.23: Pop-up window to create an Ethernet sender

An Ethernet sender can be created and configured by pressing the *Add* button in the lower left corner of the Data Channels menu (marked red in Fig. 6.23).

For details about the Ethernet Sender plugin refer to the *DEWETRON_OXYGEN_Ethernet_Sender_Vx.x* Manual which is available on the DEWETRON CCC portal (https://ccc.dewetron.com/).

6.5 Remote control and streaming interfaces

The following Table 6.2 provides an overview and comparison about the licensing, typical performance and other additional information of the different remote control and streaming interfaces.

Interface option	Included in OXY- GEN	Interface	Typ. application	Typ. performance
SCPI	Yes	Standard Ethernet	Fetching of actual values loading setup, application control, application	~50 S/s with 50 channels; up to 10 kS/s with 10 channels (buffered reading "ELOG")
XCP Slave	License required	Standard Ethernet	Stream of mea- surement values, basic recording control; only compatible with CANape yet; INCA compatibility is in progress	~10 kS/s with 8 channels
EtherCAT	License required	TRION EtherCAT	EtherCAT testbed environment; Pro- vide measurement values on the EtherCAT bus with PDO mechanism	~400 S/s with 100 channels
Data Stream	License required	Standard Ethernet	Live processing of raw and full speed data in 3rd party application; uses native TCP/IP sockets for data transfer; multiple streams can be created	~100 kS/s with 350 channels or ~2 MS/s with 12 channels
Ethernet Sender	Plugin required	Standard Ethernet	Send actual and synchronized data with timestamps	1-100 Hz

Table 6.2: Remote control and streaming interfaces - overview

6.6 User interface

6.6.1 Localization

\$ 0	IYGEN		-		×
\$	Oxygen Setup	Localization			
	Storing & Filename Startup Settings	Language en - (English International)			
# •	Advanced Settings Hardware DAQ Hardware	Time settings Use UTC Time ht:mm:ss 09:50:24 (UTC+0)			
	Amplifier / RS232 / RS485 Sensors	Temperature unit			
*	Remote Control Remote Control	Thousands separator			
	User Interface Localization				
	UI Options Advanced Graphics				
	System Information Component Versions				
	Errors and Warnings Plugin Overview				
	License OXYGEN News				
	Developer OML Sandbox			0	ì

Fig. 6.24: Localization – settings

The Localization menu allows users to adjust the following settings:

- Language: Change the software language.
- Time settings: Set the time to UTC and choose the desired time format.
- Temperature unit: Select between Celsius and Fahrenheit.
- Thousands separator: Define a separator to improve the readability of large numbers. This setting applies to the Analog Meter, Digital Meter, and Table instruments.

6.6.2 UI options

🛆 de	wetron_setup_20211215_090822.dms - OXYG	5EN	- 0	×
ø	Oxygen Setup	UI Options		
			_ 0	×
	Plugin Overview License Developer QML Sandbox Quit to OS Shutdown System Jump to measurement settings			

Fig. 6.25: UI Options – settings

In the UI Options, the user can change different settings of the UI appearance:

- UI mode will change the size of the icons and adjust it for different PC types
- Style will change the menu style
- Color Scheme will change the color scheme of the software. A light and a dark mode are available.
- Show touch keyboard regulates the appearance of a touch keyboard
- Text size changes the text size in OXYGEN
- Sidebar position: If Left side is selected, the sidebars will swap and the Reset button will set the menu order to the default order if changes have been made. For customizing the menu order, refer to Custom ordering of menu locations.
- *Channel setup: Edit highlighted row only:* When this option is selected and the user selects a channel in the Channel Setup, the selected channel will only be highlighted when the user clicks on the channel name and a second click for changing the channel name is necessary. When this option is NOT selected, the user will be able to change the channel name by a single click on the channel name.

6.6.3 Advanced graphics

Setup ; & Filename	Advanced Graphics			
; & Filename				
	GRAPHICS API			
o Settings	Automatic	Qt automatic backend selection (usually a RHI backend)		
ed Settings	OpenGL	OpenGL ES 2.0 or higher		
re		OpenGLES 2.0 or higher via a graphics abstraction layer		
ardware		Openol 13 20 01 mgnet via a graphics abstraction layer.		
er / RS232 / RS485	Direct3D11 RHI	Direct3D 11 via a graphics abstraction layer.		
Sensors Remote Control	Vulkan RHI	Vulkan 1.0 via a graphics abstraction layer.		
	OpenVG	OpenVG via EGL		
e Control				
erface	Direct3D 9 ANGLE	ANGLE using Direct3D 9		
ation	Direct3D 11 ANGLE	ANGLE using Direct3D 11		
ons	Show FPS overlay			
ed Graphics				
Information				
onent Versions				
Overview				
er				
andbox				
Quit to QS				
ce re ar o ce lin o n o	Settings d Settings d Settings dware r/R5232/R5485 ontrol Control face tion ns d Graphics formation ent Versions verview r	Settings d Settings d Settings d Settings d Automatic OpenGL GenGL	Settings ad Settings benches benches ad Settings ad Settings benches ad Settings ad Graphics ad Settings ad Graphics ad Settings ad	Settings Automatic Qt automatic backend selection (usually a RH backend) a Settings OpenGL OpenGL ES 2.0 or higher a OpenGL RH OpenGL ES 2.0 or higher of DenGL RH OpenGL ES 2.0 or higher of DenGL RH OpenGL DI 14 a graphics abstraction layer. of DirectSD 11 RH DirectSD 11 via a graphics abstraction layer. of Ukan RH Vulkan 1.0 via a graphics abstraction layer. of OpenGL OpenGL ES 2.0 or higher via a graphics abstraction layer. otrot OpenGL face OpenGL ES 2.0 or higher via a graphics abstraction layer. otrot OpenGL face OpenGL ES 2.0 or higher via a graphics abstraction layer. otrot OpenGL face OpenGL face OpenGL ES 2.0 or higher via a graphics abstraction layer. openViG OpenViG Via EGL OpenViG DirectSD 11 ANGLE Thoreas D 3 ANGLE ANGLE using DirectSD 11 Show FPS overlay Status DirectSD 11

Fig. 6.26: Advanced graphics – settings

In this section the user can change the graphic framework, if there any problems with the graphic occurred. Contact us for more information or any help.

6.7 System information

6.7.1 Component version

۲	Oxygen Setup	Component Versions	
	Storing & Filename Startup Settings Advanced Settings	DEWETRON OXYCEN 7.3.1 Build date: 2024-05-21 11:04 Revision: 4126 Hash: bf602cbe01b1	
۵.	Hardware	FRAMEWORK	
4	DAQ Hardware	Qt 5.15.11	
•	Amplifier / RS232 / RS485	Renderer: Direct3D 11 ANGLE, OpenGL: 4.6	
	Sensors	Card name: Intel(R) Iris(R) Xe Graphics	
	Remote Control	Driver version: 31.0.101.4887	
	Remote Control	Show 3rd party software licenses	
4	User Interface		
<mark>م</mark>	Localization		
-	UI Options		
	Advanced Graphics		
	System Information		
	Component Versions		
	Errors and Warnings		
	Plugin Overview		
	License		
	OXYGEN News		(🕐 🕱

Fig. 6.27: Component Versions – overview

In this section the versions of all components and 3rd party licenses are displayed.

6.7.2 Errors and warnings

-		
⊕	Oxygen Setup	Errors and Warnings
_		
≔	Startup Settings	2022-05-23 07:00:00.123: [Error] Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore
0	Advanced Settings	2022-05-23 07:00:01.123: [Warning] et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolore
	Hardware	
	DAQ Hardware	
ş	Amplifier / RS232 / RS485	
	Sensors	
	Remote Control	
	Remote Control	
*	User Interface	
	Localization	
Δ	UI Options	
	Advanced Graphics	
	System Information	
	Component Versions	
	Errors and Warnings	
	Plugin Overview	
	License	
	Developer	
	QML Sandbox	
	Quit to OS	
	Shutdown System	Clear

Fig. 6.28: Errors and warnings

This menu displays all raised errors and warnings as a list with time stamps.

6.7.3 Plugin overview

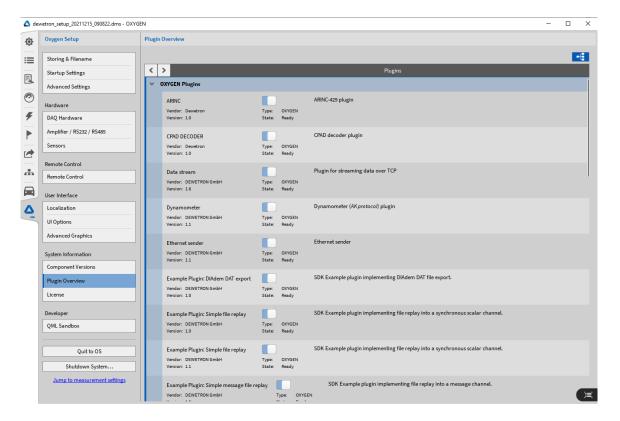


Fig. 6.29: Plugin overview

This menu displays an overview of all active plugins. These cannot be deactived.

6.7.4 License

Storing & Filename Creation date: Startup Settings Product: Advanced Settings Product: Hardware OXYGEN NET DAQ Hardware OXYGEN NET Expert Power Analysis CAN Out Amplifier / R5232 / R5455 Swept Sine Analysis Sensors Swept Sine Analysis Remote Control OXTS User Interface Data Stream Localization Remote Control XCP Quer Interface Sensor Database Order Analysis Sound Level System Information Order Analysis Component Versions Modus TCP Plugin Overview Doliz over CAN		Oxygen Setup	License					
Startup Settings Serial number: Advanced Settings Product: VXGEN &x Features: General Test and Measurement OXYGEN-NET DAQ Hardware OXYGEN-NET DAQ Hardware CAN Out Amplifier / R5232 / R5485 Psophometer Sensors Bird's Eye Multi (10) Remote Control ADMA Quert Control ADMA Vector CAN Interface Ethernet Receiver Das Stream Remote Control X CP User Interface Das Stream Ul Options Remote Control Calibration Ul Options Ethernet Receiver Advanced Graphics Order Analysis System Information Sound Level Component Versions Offilme Video Pugin Overview ODB2 over CAN		Storing & Elename	Creation date:					
Advanced SettingsProduct:OXYGEN 6.xHardwareGeneral Test and MeasurementOXYGEN NETDAQ HardwareCAN OutExpert Power AnalysisSensorsSensorsSwept Sine AnalysisBird's Eye Multi (10)Bird's Eye Multi (10)Remote ControlADMAOxTSVector CAN InterfaceUser InterfaceEthernet ReceiverData StreamBerde Control XCPU OptionsAdvance Control: CalibrationAdvanced GraphicsSound LevelSystem InformationSound LevelOmponent VersionsMiddus TCPPugin OverviewODB2 over CAN								
Number Setting: Feature: General Test and Measurement Hardware OXYGENNET Expert Power Analysis DAQ Hardware CAN Out Expert Power Analysis Sensors Bird's Eye Mult (10) Remote Control ADMA OXTS Vector CAN Interface Localization Remote Control: XCP I Diptions EtherCAT Slave Advance Graphics Order Analysis System Information Sound Level Orgen Analysis Sound Level Prophometer Sound Level Outstable Order Analysis								
Hardware OXYGEN-NET DAQ Hardware Expert Power Analysis Amplifier / RS232 / RS45 Sophometer Sensors Bird's Eye Multi (10) Remote Control ADMA Remote Control OXTS Remote Control OXTS User Interface Ethernet Receiver Localization Remote Control: Calibration Ul Options Remote Control: Calibration Advanced Graphics Sensor States System Information Sound Level Omponent Versions Offline Video Pugin Overview ODB2 over CAN)	Advanced Settings						
DAQ Hardware CAN Out Amplifier / R5232 / R5485 Peophometer Sensors Swipts in Analysis Bird's Eye Multi (10) ADMA Remote Control ADMA OxTS Vector CAN Interface User Interface Ethernet Receiver Data Stream Benote Control Control CAIbration U Options Remote Control Calibration Advanced Graphics Order Analysis System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN		Hardware						
Amplifier / RS232 / RS485 CAN Out Amplifier / RS232 / RS485 Poophometer Sensors Bird's Eye Multi (10) Remote Control ADMA Ox75 Ox75 Remote Control Vector CAN Interface User Interface Ethernet Receiver Localization Remote Control: Calibration Ul Options Remote Control: Calibration Advanced Graphics Sensor Database System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN		DAQ Hardware						
Sensors Swept Sine Analysis Bird's Eye Multi (10) Remote Control ADMA Or.TS Vector CAN Interface User Interface Ethernet Receiver Localization Remote Control: Calibration Ul Options Remote Control: Calibration Advanced Graphics Sensor Database System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN								
Bird's Eye Multi (10) ADMA ADMA Gemote Control O'r.15 Remote Control User Interface Data Stream Localization Remote Control: Calibration Ul Options Advanced Graphics System Information System Information Order Analysis Plugin Overview ODB2 over CAN								
Remote Control OxTS Remote Control Vector CAN Interface User Interface Data Stream Localization Remote Control: XCP UI Options Remote Control: Calibration Advanced Graphics Sensor Database Order Analysis Order Analysis System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN		0012013						
Remote Control Vector CAN Interface User Interface Ethernet Receiver Localization Remote Control: XCP UI Options Remote Control: Calibration Advanced Graphics Sensor Database System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN		Remote Control						
Ode interfacte Data Stream Localization Remote Control: XCP UI Options EtherCAT Slave Advance Graphics Sensor Database Order Analysis Order Analysis System Information Sound Level Component Versions Offline Video Plugin Overview ODB2 over CAN		Remote Control	-					
Localization Data Stream Ul Options Remote Control: Calibration Advanced Graphics Sensor Database Order Analysis Order Analysis System Information Sound Level Component Versions Offline Video Pugin Overview ODB2 over CAN		liser Interface						
Ul Options EtherCAT Stave Advanced Graphics Sensor Database System Information Order Analysis Component Versions Offline Video Plugin Overview ODB2 over CAN								
Advanced Graphics Ether CAT Slave Advanced Graphics Sensor Database Order Analysis Order Analysis System Information Sound Level Component Versions Offline Video Plugin Overview ODB2 over CAN	•							
Order Analysis System Information Sound Level Component Versions Offline Video Plugin Overview ODB2 over CAN		-						
System Information Sound Level Component Versions Offline Video Plugin Overview Modbus TCP ODB2 over CAN ODB2 over CAN		Advanced Graphics						
Component Versions Offline Video Plugin Overview Modbus TCP ODB2 over CAN ODB2 over CAN		System Information						
Plugin Overview ODB2 over CAN		Component Versions	0	ffline Video				
		Plugin Overview						
		License		Update	Remove			
			_					
Developer		QML Sandbox						
Developer QML Sandbox								
		Quit to OS						
QML Sandbox		Shutdown System						
QML Sandbox Quit to OS		Jump to measurement settings						

Fig. 6.30: License overview

Here you can find some information about the license and the active features. Additionally, the license can be updated by clicking on the *Update...* button and selecting the new license file. OXYGEN must be restarted. To remove the current license, click on *Remove...*, OXYGEN will switch into the Evaluation mode.

Note: A license file for OXYGEN 5.x is not valid for OXYGEN 6.x

6.7.5 OXYGEN News

In the OXYGEN News tab you can view information on known problems and activate automatic updates for these as well as a list of available features.

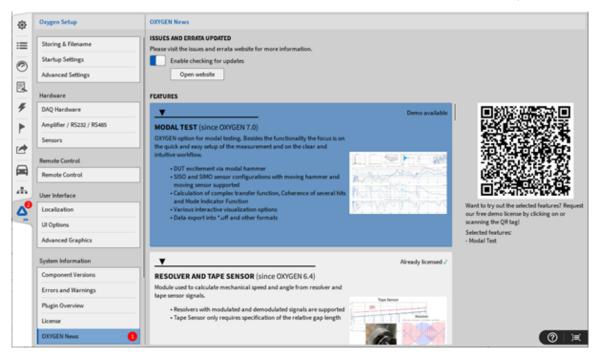
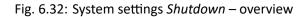



Fig. 6.31: License overview

6.8 Shutdown

\$	System Settings	Shutdown
	Measurement Setup Header Data Advanced Setup	Quit to OS Shutdown System
0	Hardware	
4	Sync Setup	
	DAQ Hardware	
	Amplifier / RS232 / RS485	
	Sensors	
-	Extensions and Plugins	
	Plugins Overview	
i	Remote Control	
	User Interface	
	UI Options	
	Localization	
	Security	
	Advanced Graphics	
	System Actions	
	Shutdown	

In the Shutdown menu, the user can terminate OXYGEN and return to the operating system or shut down the whole system.

CHAPTER

SEVEN

DATA CHANNELS MENU

7.1 Overview

In the *Data Channels* menu, the user can manage its input channels and manipulate the hardware settings of the hardware modules.

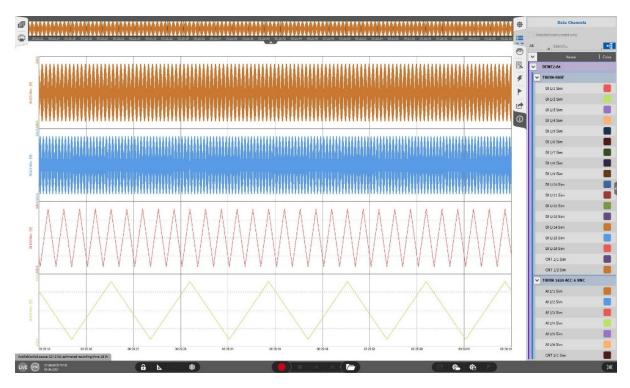


Fig. 7.1: Data Channels menu - quick view

A single click on the *Data Channels* menu button will open the quick view where the user can see the activated hardware channels (see Fig. 7.1). Expanding the menu to the full screen by keeping the button pressed and moving the mouse to the opposite side of the screen will open the full data channel menu that can be seen in Fig. 7.2. The full channel list and the connected hardware with the individual settings can be checked and manipulated here. The functionality of the individual buttons will be explained in the following section.

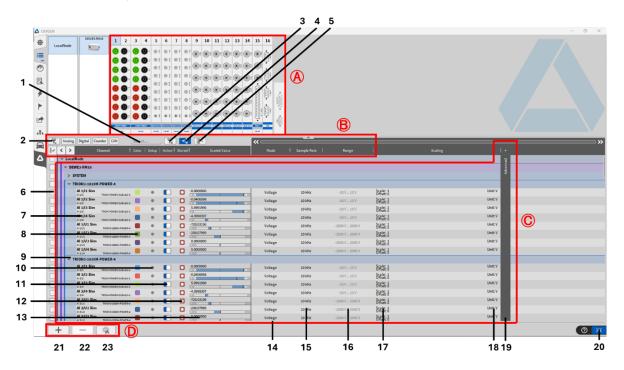


Fig. 7.2: Complete Data Channels menu

		the Channel Menu – Overview								
No.	Name	Name Description								
A - Hai	rdware overview									
	-	oards and available channels. Click on a certain pective channel(s) will be highlighted in the list.								
B - Filt	er and grouping									
1	Search Filter	Search a channel according to its name								
2	Channel Filter	Filters the displayed channels according to their channel type (<i>All, Analog, Digital,</i> <i>Counter, EPAD, Math, Video, Power, CAN</i>). These channel types can also be set as fa- vorite.								
3	Clear Filters	Clear active Channel and Search Filters								
4	Channel Grouping	Sort the Channel list according to the con- nected TRION board or in an alphabetical or- der								
C - Cha	nnel options									
5	Change channel sorting (non- analog channels)	When selected, non analog channels like math or statistic channels can be rearranged (see Fig. 7.3).								

Table 7.1: Push buttons in the Channel Menu – Overview

continues on next page

		continued from previous page
No.	Name	Description
6	Select button	Select several channels in the list, i.e. for set- ting them active or inactive simultaneously.
7	Channel Name	Individual channel name; Can be changed individually; for additional information re- fer to <i>User interface</i> . Deleting the channel name and pressing <i>ENTER</i> restores the de- fault channel name. In case a name is given twice, a warning is displayed.
8	Color	Color scheme of the channel can be changed here
9	Hide button	Hide the channels of a complete card
10	Setup	Enter the input channel setup (All channel de- pendent settings can be changed here).
11	Active button	Set a channel active or inactive; An active channel can be displayed in an instrument, used in a math channel and can be recorded, an inactive channel not
12	Stored button	Select whether channel data shall be stored or not when a measurement is running
13	Scaled Value	Preview of the input signal
14	Mode	Change the mode of the input channel here
15	Sample Rate	Change the sample rate here; Remark: to change the sample rate for individual channels refer to <i>Channel-wise Sample Rate Selector</i> .
16	Range	Change the input range of the channel here
17	Scaling	Change the channel scaling here
18	Physical unit	Physical unit of the channel, can be changed in the channel setup
19	Advanced Options	Expand the channel dependent advanced Op- tions: Excitation, LP Filter, Coupling, Input Type, Sample Format, Sensor Offset, Baud rate, Counter_Filter, Inverted_A, ListenOnly, Source_A, Termination, Threshold
20	<i>Toggle</i> button	Quick access to Data channels menu; toggles between the Channel List and the previously opened menu
D - Ma	ath options	
21	Add button	Add a Formula, Statistics, Filter, FFT, Rosette, Power Group, Ethernet Receiver or Ethernet Sender

Table 7.1 - continued from previous page

continues on next page

No.	Name	Description
22	<i>Delete</i> button	Delete the Formula, Statistics, Filter, FFT, Rosette, Power Group, Ethernet Receiver or Ethernet Sender that is currently selected
23	Create Power Group	Create Power Group with selected channels or empty Power Group

The following screenshot belongs to No. 5 in Table 7.1.

lo	ocalNode		CH1 CH2				CH7 CHB										
	4.14		0 0		0 0		(i) (ii) (ii) (ii)		Loss I								
			11 12	13	14	U1	J2 U3	U4	· · ·	-							
		~	00) 0	0	0(90	0	eases a	1							
		- (00	0	0	0 (0.0	0	1	ş							
				-				A		-							
2			Search.		, Y x	-6			/	«c							
1		hannel	Color	Setup	Active	Stored	-	Scaled Valu	ie		lode	Sample Rate	Range		Scaling	· ·	
	✓ LocalNode																
	✓ FFT Channels Al 1/l1 Sim_FFT	Cor								1						Adva	
	AI 1/12 Sim_FFT	Henn, 50%, 2.4	-	•							Complex	4.8828125 Hz					
	Al 1/13 Sim_FFT	Henn, 50%, 2.4	He	0							Complex Complex	4.8828125 Hz 4.8828125 Hz	-10 V 10 V				
	AI 1/14 Sim_FFT	Henn, 50%, 2.4	He									4.8828125 Hz				_	
	ALSING FIT ✓ FIR Filter Channel	Hann, 50%, 2.4	Ha 📕	*						Pr In						_	
	Y FIR_1			*						1 10	wpass						
	Al 1/l1 Sim_fi	Itered				0	0.0000000				119433	10 kHz		Signet 1		Unit: V	
	Al 1/12 Sim_fittered Al 1/12 Sim_fit	Itered		0		•	0.0406587			32		10 kHz		Scale: 1 Offset: 0		Unit: V	
	Al 1/12 Sim_filtered Al 1/13 Sim_fi	Itered		۲	õ		6.0007995			52		10 kHz		Scale: 1 Offset: 0		Unit: V	
	Al 1/15 Sim_Altered Al 1/14 Sim_fit Al 1/14 Sim_fit Al 1/14 Sim_fit and	Itered		۲	ñ		5.1998397			2		10 kHz	-10 V 10 V	Scale: 1 Offset: 0		Unit V	
	✓ Formula								_					011200			
	Formula 0			۲		0;	0.0000000	_				10 kHz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
	Formula 1			۲		0	0.0406598					10 kHz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
	Formula 2			۲			0.0406598	_	_			10 kHz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
	Formula 3			۲			5.1998397					10 kHz	-10 V 10 V	Scale: 1		Unit: V	
	Statistics 1																
	Al 1/I1 Sim_AVC	AV0.	. 🛑	۲			0.0000000			Av	erage	1 Hz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
Form	1/I2 Sim_AVC			۲		0	0.0000000			Av	erage	1 Hz		Scale: 1 Offset: 0		Unit: V	
	Al 1/13 Sim_AVO	AV2.		۲	õ		0.0008000			-	erage	1 Hz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
	Al 1/13 Sim Statistics Al 1/14 Sim_AVC Al 1/14 Sim Statistics	AV2.		۲	Õ		0.0001600			2	erage	1 Hz	-10 V 10 V	Scale: 1 Offset: 0		Unit: V	
	V DEWE3-A4							_									
	> SYSTEM																
	V TRION3-1820-P	OWER-4															
	+	藻															

Fig. 7.3: Channel sorting

If a measuring card is completely folded in, as shown in Fig. 7.4, the slot number in which the respective measuring card is located is displayed.

✓ LocalNode	
V DEWE3-RM16	
> SYSTEM	Slot 0
> TRION-TIMING-V3	Slot 1
> TRION3-1820-MULTI-8-L0B	Slot 2
> TRION3-AOUT-8	Slot 3
> TRION3-1820-MULTI-8-L0B	Slot 4
> TRION3-1820-MULTI-8-L0B	Slot 5
> TRION3-1820-MULTI-8-L0B	Slot 6
> TRION3-1820-MULTI-8-L0B	Slot 7
> TRION3-1820-MULTI-8-L0B	Slot 8
> TRION3-1820-MULTI-8-L0B	Slot 9
> TRION3-1820-MULTI-8-L0B	Slot 10
> TRION3-1820-MULTI-8-L0B	Slot 11
> TRION3-1820-MULTI-8-L0B	Slot 12
> TRION3-1820-MULTI-8-L0B	Slot 13

Fig. 7.4: Slot numbering with folded modules

7.2 Filter- and grouping options

7.2.1 Selecting multiple channels

Inside the *Data Channels* menu, the user can select multiple Input channels through various methods. With multiple channels selected, the user can address changes in Channel Settings to multiple channels at one time.

To select multiple channels:

- Select a channel using the system graphic in the upper left-hand corner of the *Data Channels* menu
- Select a check box on the left edge of the individual *Data Channels* menu adjacent to each individual channel
- The user can also just simply click onto the channel row itself and select several channels by keeping the **CTRL** key pressed

1 2 3 4									
ш	A Tx			«					> >>
× Active	e Channel C	olor Setup	Scaled Value	Mode		Range			
	AI 2/1 Sim	۲	-0.403012 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 2/2 Sim	÷	-0.017185 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 2/3 Sim AI 2/3 TRION-2402-dACC-6-BNC	۲	-20.168004 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V 😤	
	AI 2/4 Sim AI 2/4 TRION-2402-dACC-6-BNC	۲	-68.033598 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 2/5 Sim AI 2/5 TRION-2402-dacc-6-BNC	۲	-11.966405 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	()
	AI 2/6 Sim AI 2/6 TRION-2402-dACC-6-BNC	۲	50.083988 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/1 Sim AI 3/1 TRION-1620-LV-6-BNC	۰	-0.509185 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/2 Sim AI 3/2 TRION-1620-LV-6-BNC	\$	0.221553 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/3 Sim AI 3/3 TRION-1620-LV-6-BNC	۰	-19.992004 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/4 Sim AI 3/4 TRION-1620-LV-6-BNC	\$	-67.998398 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/5 Sim AI 3/5 TRION-1620-LV-6-BNC	۲	-12.001605 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 3/6 Sim AI 3/6 TRION-1620-LV-6-BNC	۰	49.995988 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/1 Sim AI 4/1 TRION-1603-LV-6-L1B	۵	-0.509161 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/2 Sim AI 4/2 TRION-1603-UV-6-L18	۲	0.221543 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/3 Sim AI 4/3 TRION-1603-LV-6-L1B	۵	-19.991688 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/4 Sim AI 4/4 TRION-1603-LV-6-L1B	\$	-67.997372 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/5 Sim AI 4/5 TRION-1603-LV-6-L1B	۲	-12.001415 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	AI 4/6 Sim AI 4/6 TRION-1603-LV-6-L1B	\$	49.995238 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	
	DI 1/1 Sim DI 1/1 TRION-TIMING	•	0.499600 AVG	DI	10000 Hz	01			
	DI 1/2 Sim DI 1/2 TRION-TIMING	۲	0.500400 AVG	DI	10000 Hz	01			
	DI 1/3 Sim	称	0.499600 AVG	ni	10000 Hz	0 1			

Fig. 7.5: Selection of several channels

7.2.2 Channel List filtering options

As explained in Table 7.1, the user can filter the channels according to their channel type or their channel name, e.g. to only show relevant channels. There are additional filtering options available which are explained in the following sections.

To get to the different filter options in the channel list, fully open the *Data Channel* menu.

Filtering by the Channel Type

To filter the channels by their type different buttons are shown on the upper border of the channel list, shown in Fig. 7.6. These buttons vary depending on the available channels, meaning only those buttons are shown, for which the according channels are really available in the channel list.

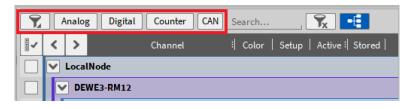


Fig. 7.6: Filtering by the *channel type*

After choosing a type the button turns blue and only the according channels are shown.

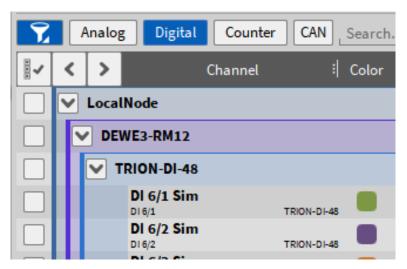


Fig. 7.7: Filtering by the *channel type*: Digital

Note: Only one channel type can be selected, therefore, it is not possible to select more buttons at the same time.

Filtering Channels by Name/Active/Mode

Another option is to filter the channels by their names or mode or just to show active channels. Those filter options are shown by 3 dots in the column header (see Fig. 7.8).

Analog	Digital Counter C/	AN Search	, 🕵 哇	
	Channel	위 Color S	Setup Active <mark> </mark> Stored	s
LocalNod	e			
DEWE3-	RM12			

Fig. 7.8: Filter option available in Data Channel Menu

- Fully open the Data Channels menu
- Left click onto the column header opens a filter menu for: channel, active, mode
- A sorting menu will appear for each filter menu, which allows the user to sort from A to Z, Z to A, by name/prefix such as AI or DI, or by true or false. Sorting by *true* or *false* will sort your channels by whether your channels or active (true) or inactive (false). The user can simply type a channel name within the menus text field. This may seem like a difficult task, but the software will automatically update the channel list as you type. Selecting a specific Mode name such as *Temperature* will only present the user with those specified channels.
- Delete an active filter with the *Clear filter* button again (see (3) in Table 7.1)

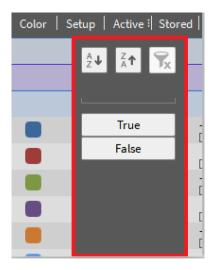


Fig. 7.9: Filtering by the Active Column

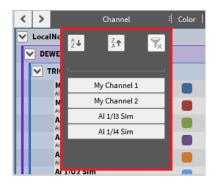


Fig. 7.10: Filtering by the Channel Column

1 2 3 4			() () ()		100 T (10 T							
All		A Tx				«					»	> _
-	Active	Channel	Color	Setup	Scaled Value		Sample Rate	Range	Scaling			
		AI 2/3 Sim AI 2/3 TRION-2402-dACC-6-BNC		æ	60.167283 AVG	24 At 🍾	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		1
		AI 2/4 Sim AI 2/4 TRION-2402-dACC-6-BNC		æ	76.033444 AVG		10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 2/5 Sim AI 2/5 TRION-2402-6ACC-6-BNC		ø	-3.966405 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V <		
		AI 2/6 Sim AI 2/6 TRION-2402-dACC-6-BNC		傪	-9.916005 AVG	DI	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		i
		Al 3/1 Sim Al 3/1 TRION-1620-LV-6-BNC		\$	1.079700 AVG	Events	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0.570526731	Unit: V [Z]		
		AI 3/2 Sim AI 3/2 TRION-1620-LV-6-BNC		۲	-0.187834 AVG		10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 3/3 Sim AI 3/3 TRION-1620-LV-6-BNC		æ	59.991987 AVG		10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 3/4 Sim AI 3/4 TRION-1620-LV-6-BNC		傪	75.998385 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 3/5 Sim AI 3/5 TRION-1620-LV-6-BNC		傪	-4.001605 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 3/6 Sim AI 3/6 TRION-1620-LV-6-BNC		®	-10.004005 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/1 Sim AI 4/1 TRION-1603-LV-6-L18		\$	0.509161 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/2 Sim AI 4/2 TRION-1603-LV-6-L18		æ	-0.187830 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/3 Sim AI 4/3 TRION-1603-LV-6-L1B		ø	59.991089 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/4 Sim AI 4/4 TRION-1603-LV-6-L1B		÷	75.997246 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/5 Sim AI 4/5 TRION-1603-LV-6-L1B		*	-4.001536 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		AI 4/6 Sim AI 4/6 TRION-1603-LV-6-L1B		¢	-10.003844 AVG	Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
										L		
Ē			Zero		Reset Ze	0	Bridge Balance	Shunt On	Shor	t On		Œ

Fig. 7.11: Filtering by the Mode Column

7.3 Changing the channel settings

It is either possible to change the channel settings in the *Data Channels* menu or in the individual channel setup that can be accessed via push button (9) (see Table 7.1). Additionally, settings can be copied (CTRL+C) and pasted (CTRL+V) between channels of the same type (e.g., from one CNT channel to another, or from one Analog In channel to another, etc.).

For documentation purposes, you can copy the entire channel configuration into third-party software such as Notepad, Excel, or similar tools. To do this, simply select the desired channels, press CTRL+C, and paste the configuration into the target application.

7.3.1 Changing the channel settings in the Data Channel menu

To change the individual channel settings in the *Data Channels* menu just click on the desired parameter with the left mouse button and a pop-up window will appear. If a parameter can be changed or not depends on the channel type (i.e. it is not possible to change the range of a digital channel) and the selection of the parameters depends on the TRION board (i.e. different Input Modes). For illustration, the following figures will show the different options that are available with a TRION-1620-ACC board.

Changing the channel color

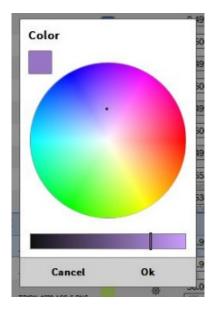
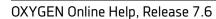



Fig. 7.12: Pop-up window for changing the channel color

Changing the input mode

Voltage	
Voltage	
IEPE	
Current	
	Voltage IEPE

Fig. 7.13: Pop-up window for changing the input mode

Changing the sample rate

Sample Rate			1
Samplerate	10000		Hz
Enable red	uction		Y
Target rate	10000		Hz 📶
Can	cel	Ok	

Fig. 7.14: Pop-up window for changing the sample rate

It is possible to change the sample rate for the whole board but also to change the sample rate channel-wise. For a detailed explanation see *Sensor scaling – bridge*.

Changing the input range

-100 V 100 V	Scale: Offset
Range	ale: iset
± 0.002 100 V	set
100	V set
100	ale:
50	ale:
20	icale
10)ffset
5	
-10 A " 10 A	icale

Fig. 7.15: Pop-up window for changing the input range

Changing the channel scaling and physical unit

Channel Scaling ty	Scaling pe_Scaling		
• Scal Unit Scaling Offset	Sensitivity V 1 0	, / <mark>. V</mark> 	V W MV KV MV
	Cancel	Ok	

Fig. 7.16: Pop-up window for changing the scaling and physical unit

Zeroing an input channel

After selecting the desired channel in the list the *Zero* push button will appear at the lower end of the *Data Channels* menu:

-0.040273	AVG	Voltage	10000
-10	10	voltage	10000
0.000562	AVG	Voltage	10000
-10	10	Voltage	10000
-2.016000	AVG	Voltage	10000
-10	10	VoltaBe	10000
-6.803200	AVG	Voltage	10000
-10	10	Voltage	10000
-1.196800	AVG	Voltage	10000
-10	10	VoltaBe	10000
5 007999	AVG		
	_	-	
		Zero	

Fig. 7.17: Zeroing an input channel

Changing the sensitivity

Also available in the Channel Scaling pop-up window:

Channel	Scaling	
Scaling typ	Scaling	
Scal	ling Sensitivity	
Unit	V	
Sensitivity	1 V/V	
Offset	0 V	Zero
	Cancel	Ok

Fig. 7.18: Pop-up window for changing the sensitivity

V

OXYGEN Online Help, Release 7.6

Changing the 2-point-scaling

Also available in the Channel Scaling pop-up window:

Cha	nnel Scalin	g			
Scali	ng type 2-p	oint			4
Unit	V				
P1:	0		V P2:	1	V
	AVG	AC RMS		AVG	AC RMS
	0		V	1	V
	Ca	ncel		Ok	

Fig. 7.19: Pop-up window for changing the 2-point-scaling

By clicking the AVG or the ACRMS button, a direct measurement point at the current instant of time can be used. A time window of 1 s into the past is used.

It is also possible to perform AVG & ACRMS calibration for multiple channels at the same time by selecting multiple channels in the channel list. By clicking on the scaling option in the channel list, the 2-point scaling window opens. By clicking on the AVG or ACRMS button, the respective value is automatically used for each selected channel individually (see Fig. 7.20).

2	icaling		innel Sca ing type _		-			
		P1:	-		V	P2:	10	v,
Scale: 0.23023282 Offset: -1.30232819	Unit V	-	AVG	٦٢	AC RMS	1	AVG	AC RMS
Scale: 0.23023281 Offset: -1.30232813	Unit: V	•	. 0		V		1	Υ.
Scale: 0.13395897 Offset: -0.33958969	Unit: V					_		
Scale: 0.10534084 Offset: -0.05340839	Unit: V							
Scale: -5.72270e-3 Offset: 1.05722695	Unit: V							
Scale: -2.21309e-3 Offset: 1.02213089	Unit V							
Scale: -0.16671112 Offset: 2.66711121	Unit: V			Car	cel		Ok	
Scale: 0.49979949 Offset: -3.99799494	Unit: V							

Fig. 7.20: AVG & ACRMS calibration for multiple channels

Applying table scaling

Also available in the Channel Scaling pop-up window:

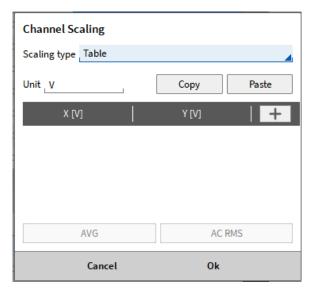


Fig. 7.21: Pop-up window for applying table scaling

Applying polynomial scaling

Also available in the Channel Scaling pop-up window:

Channel Scaling		
Scaling type Polynomial	Сору	y Paste
Degree	Coeffic	:ient +
x ⁰	0	x
x1	1	x —
Cancel		Ok

Fig. 7.22: Pop-up window for applying polynomial scaling

Changing the bridge scaling settings

SENSOR SCALING		
Scaling type Bridge		-
Gage factor (k) 2	μm/m	
Bridge factor 1		

V

OXYGEN Online Help, Release 7.6

For more details about the sensor scaling for the bridge mode see *Sensor scaling – bridge*.

Changing the LP filter (Expand advanced settings)

	Frequency Order 8	AI Type Butterw	UEO orth	DC
LP Filter				
Frequency 1	600000	Hz		
Auto				
Order	Т	ype		
8	L	Butterwor <mark>t</mark> h		
Can	cel		Ok	
0.0		_		DC

Fig. 7.24: Pop-up window for changing the LP filter

Note: When the sample rate is changed an appropriate filter will be selected automatically (Auto-mode).

Changing the coupling mode (Expand advanced settings)

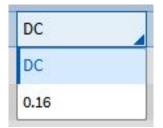
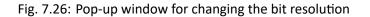



Fig. 7.25: Pop-up window for changing the coupling mode

Changing the bit resolution (Expand advanced settings)

Can only be changed for the whole board and not for single channels:

Auto	
16 bit	12
Auto	

Setting a sensor specific delay

For analog inputs it is possible to define a sensor specific delay in the range of 0-500ms

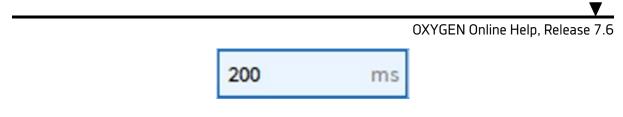


Fig. 7.27: Pop-up window for compensating the sensor delay

The delay (of the sensor) on this incoming signal is then compensated by the specified time (see Fig. 7.28).

AMPLIFIER OPTIONS	
Mode	Voltage
Range	-2000 V 2000 V
LP filter	Auto
	e Butterworth
Sensor delay compens	0500 ms 200 ms
Effective sensor delay c	_200 ms

Fig. 7.28: Compensating the sensor delay

The effective sensor delay is calculated based on the sample rate and always rounded off. For example, at a sample rate of 100 Hz and a sensor delay of 99 ms the effective sensor delay is set to 90 ms.

Sensor delay co	99	ms
Effective sensor d	90	ms

Fig. 7.29: Effective sensor delay which can be applied

Channel-wise Sample Rate Selector

To change the sample rate of whole module simply click on one of the sample rates of a channel of that module and select the desired sample rate from the *Sample rate* drop-down list (see Fig. 7.30).

Sample Rate			v
Samplerate	10000	Hz	v
Enable reduc	50000		V
	20000		
Target rate	10000		
Cance	2000		
Cance	1000		
		_	

Fig. 7.30: Selection of the sample rate of a TRION module with the drop-down list

To change the sample rate just for an individual channel, click on the *Enable reduction* button in the Sample Rate window (see Fig. 7.31). The target rate can then be selected from the drop-down list. There is a selection of different sample rates available for an individual channel as integer divisors down to $1/10000^{\text{th}}$ of the sample rate of the module. It is not possible to enter a sample rate, only to select one from the drop-down list.

For example, if the sample rate of the module is selected as 200 kHz, the smallest available sample rate for a channel on that module is 20 Hz.

Note: The smallest available reduction is 1 Hz. If the sample rate of the module is 100 Hz, the smallest reduction for a channel is 1 Hz.

Sample Rate		v
Samplerate	500000	Hz
Enable reduce	tion	v
Target rate	10000	Hz 📕
Cance	20000 15625	
	10000	
Voltage	5000	LO V
Voltage	1000	10 V

Fig. 7.31: Selection of a sample rate for an individual channel

In case the sample rate of the module will be changed, whenever a reduction is active, the target rate stays the same if it is still an integer divisor of the new sample rate of the module. This also means that only a reduction of the module sample rate is possible.

Example The sample rate of the module is set to 500 kHz and Channel 2 is set to a reduced sample rate of 20 kHz. The sample rate of the module is now changed to 100 kHz, and the target rate of Channel 2 stays at 20 kHz, since this is also an integer divisor of 100 kHz.

In case the target rate does not fulfill this requirement when the sample rate of the module is changed, if i.e. the sample rate is smaller than the reduced rate of a channel, the effective rate is shown in red below the target rate seen in Fig. 7.32. The effective rate is chosen to be as close as possible to the original selected target rate, which is still possible with the new sample rate of the module. With the *Accept* button this effective rate will be used as the new target rate of the channel.

-	(10000 H2)		
Sample Rate			v
Samplerate	2000	Hz	v
Enable reduction	tion		V
Target rate	10000	Hz	
Effective rate	2000 Hz	Accept	
Cance	l	Ok	
voitage	10000112	10 4 1	-V-

Fig. 7.32: Effective sample rate when changing the sample rate of the module

In case this suggested effective rate is not accepted by clicking the button, the effective rate is shown

in red in the channel list (see Fig. 7.33). The originally selected target rate is shown in brackets below. Even though the effective rate was not accepted, it will still be used as new target rate for this channel. The red marking solely serves as an indication for this.

2000 Hz
2000 Hz (10000 Hz)
2000 Hz
2000 Hz

Fig. 7.33: Not accepted effective rate as reduced sample rate in the channel list

Information

- The channel-wise sample rate selector is also applicable with formula channels
- The frequency of the AUTO-Filter will be adjusted automatically with the new sample rate

Working principle

This chapter shortly explains the working principle behind the channel-wise sample rate selector. The samples are physically sampled with the set sample rate, which is defined in the channel list (red box in Fig. 7.34). If the reduction is enabled the user can set a reduced sample rate (blue box in Fig. 7.34) which is converted to an integer divider in the background and unnecessary samples are skipped

Voltage	10000 Hz	-2 V 2 V			
Sample Rate					
Samplerate	Samplerate 200000				
Enable reduction	tion				
Target rate	Hz 🚽				
Cance	I.	Ok			

Fig. 7.34: Channel-wise sample rate settings

If the filter settings are set on AUTO, the filter is adjusted according to the target sample rate, therefore, the user must not worry about aliasing. In the exemplary settings above, the filter would be set automatically to 3333.3 Hz for this channel. However, the user can override the filter settings if needed.

Fig. 7.35: Working principle for the channel-wise sample rate reduction

Example

In Fig. 7.36 exemplary signals with and without sample rate reduction and with different filter settings can be seen. The different signals have the following settings:

- Blue signal Sample rate: 200 kS/s Filter setting: AUTO
- Red signal Reduced sample rate: 10 kS/s Filter setting: AUTO
- Green signal Reduced sample rate: 10 kS/s Filter setting: 66666.6 Hz

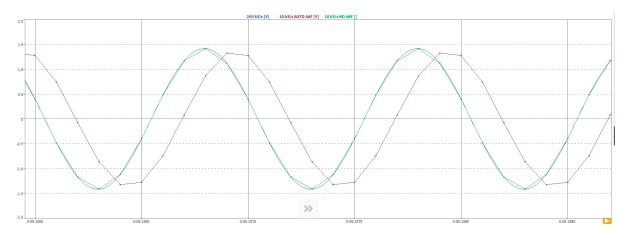


Fig. 7.36: Channel-wise sample rate reduction with example signals

The red signal is phase-shifted due to the anti-aliasing filter, which is automatically set to 3333.3 Hz. The green signal also has a reduced sample rate and a manual set filter, according to the auto filter setting of the blue signal. Therefore, those two signals are not phase-shifted. In this case, the user must be aware of aliasing.

Table scaling

OXYGEN offers the possibility to apply non-linear scaling in form of a table for non-linear sensors. This can be done in the data channel menu but also in the channel settings of an individual channel.

Following options are available:

- The unit can be specified
- Individual points to specify x- and y-values can be added by clicking on the + button (see Fig. 7.34)
- A point can be removed by clicking on the button (see Fig. 7.35)

SENSOR	SCALING					
Scaling	2-point	Table				
Unit V			(Сору		Paste
	X [V]			Y [V]		+
	AVG				AC RMS	

Fig. 7.37: Table scaling – add point to specify x- and y-value

SENSOR	SCALING					
Scaling	2-point	Table				
Unit V				Сору	Paste	
	X [V]			Y [V]	+	
0			1]
1			3		—	
	AVG				AC RMS	

Fig. 7.38: Table scaling – delete point

- By clicking the AVG or the AC RMS button, a direct measurement point at the current instant of time can be added to the table. A time window of 1s into the past is used.
- A table can also be copied from another source, e.g. Excel and pasted with **CTRL+V** or the *Paste* button into the table scaling menu. Likewise, the table can be copied using **CTRL+C** or the *Copy* button and pasted into e.g. Excel (see Fig. 7.36).

a Halp Dalaaca 7

	А	В	SENSOR SCALING
1	1	100	Scaling 2-point Table
2	2	105	Unit V Copy Paste
3	3	110	×[V] Y[V] +
4	4	120	
5	5	150	2 105 —
6	6	180	.4
7	7	250	5
8	8	350	6 180
9	9	500	7 250
10	10	700	AVG AC RMS

• To copy and paste a whole table from one channel to another the *Copy* button in channel 1 can be used. After entering the channel settings of channel 2, the *Paste* button can simply be clicked on, and the table will also be applied here.

Note:

- For a valid scaling, at least two points have to be added, otherwise an error message will appear.
- If duplicate x-values exist in the table, an error message will appear.
- If a value is out of the defined table range the scaling will be extrapolated.
- Linear interpolation is applied between the table points.
- The x-values do not necessarily have to be entered from lowest to highest value, since the table will be sorted when leaving and entering the menu again.
- As it is also noted in *Selecting multiple channels*, the whole channel settings, including the table scaling, can be copied and pasted between different channels using **CTRL+C** and **CTRL+V**.

Polynomial scaling


OXYGEN offers the possibility to apply non-linear scaling in form of a polynomial for non-linear sensors. This can be done in the data channel menu but also in the channel settings of an individual channel. The following options are available (see Fig. 7.39):

- The unit can be specified.
- A polynomial coefficient can be added by clicking on the + button.
- A polynomial coefficient can be deleted by clicking on the button.
- By clicking on the Copy button the table can be copied and pasted in e.g. Excel or a third party program.
- The polynomial scaling can also be pasted from another source, e.g. Excel by clicking on the *Paste* button or with the shortcut **CTRL+V**

Each coefficient must be defined. In Fig. 7.39 and Fig. 7.40 the following polynomial is represented:

 $1 + 2x + 6x^2 + 5x^4$

SENSOR SCALING		
Scaling type Polynomial		4
Unit_V	Сору	Paste
Degree	Coefficient	+
x ⁰	_1	x
x1	2	х
x ²	6	х
x ³	0	х
x ⁴	5	x —

	A	8	
1	Degree	Coefficient	
2	0	1	
3	1	2	
4	2	6	
5	3	0	
6	4	5	
7			

Fig. 7.40: Copying of a table for the polynomial scaling in OXYGEN

Enum scaling

The so-called enum scaling or enum label editor is available in the scaling section of the channel settings for some defined channels. With the enum scaling a text label can be defined for a specific, unique signal value. The text label is then shown in the digital instrument and as labels in the recorder (if activated, see *Instrument properties*), whenever the signal value takes on the specified value, see Fig. 7.43. The following channels support enum scaling:

- CAN channels: If the DBC file already includes an enumeration it can be parsed. The enumeration can be edited in the enum scaling editor.
- Flexray and ARXML channels: Parsing of enum data is not supported
- Ethernet receiver channels
- IMU (ADMA & OxTS) channels: Enum data is not stored in the channel definition

∀ т	RION-CAN-4			
~	CAN 1/1 Sim	TRION-CAN-4	¢	
•	BAP_ACC CAN MESSAGE		٢	
	BAP_Data_ACC CAN SIGNAL		٢	
	Airbag_03 CAN MESSAGE		۲	
	AB_MKB_Safing CAN SIGNAL		۲	
	AB_MKB_gueltig		۲	

Fig. 7.41: Enum Scaling of a CAN channel

In the enum scaling editor new labels can be created by clicking on the + button, and deleted by clicking on the – button. The table can be copied (Copy button) and pasted into another program. An existing table can also be pasted from another source into OXYGEN (Paste button).

Enum Scaling Editor					
Сору		Paste			
Value		Label	- 1	+	
1	ок			-	
2	NOT O	ĸ		-	
G	incel		Ok		

Fig. 7.42: Enum Scaling Editor

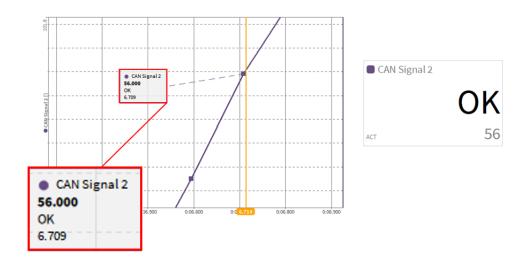


Fig. 7.43: Enum Scaling - display in the digital instrument and as label in the recorder

Sensor scaling – bridge

V

The following section gives a small overview about the scaling setting for different bridge configurations. For a detailed explanation about this topic refer to further literature.

The following definitions are used for the equations:

- $R_i \hdots$... Strain gage resistor of the bridge
- U_D ... Bridge output voltage
- U_{IN} ... Bridge supply voltage
- ε ... Elongation
- k ... Bridge factor
- v ... Poisson's ratio

Quarter bridge

Used to measure tension and compression

Schematic	U_D / U_{IN} equation	Bridge factor	Lin- earity	Active strain gauges
R1 R2 Uno- R2 Uno- R4	$\frac{U_D}{U_{IN}} = \frac{1}{4} * \frac{\Delta R_1}{R_1}$ $\frac{U_D}{U_{IN}} = \frac{1}{4} * k * \varepsilon$	1	No	One active strain gauge (R ₁)

Table 7.2: Quarter bridge

Half bridge

Used to measure bending

Schematic	U_D / U_{IN} equation	Bridge factor	Lin- earity	Active strain gauges
R1 Ub R2 Ub R2 Ub R2 Ub R4	$\frac{U_D}{U_{IN}} = \frac{1}{4} * \left(\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{\Delta R_2}\right)$ $\frac{U_D}{U_{IN}} = \frac{1}{4} * k * (\varepsilon_1 - \varepsilon_2)$		Yes	Two active strain gauges (R_1 and R_2). The elongation of $R_{1\text{ and }R:\text{sub:'}2}$ must be the same but opposite in sign, i.e. one strain gage can be put on top of a beam and the other on the bottom.

Table 7.3: Half bridge - bending

Used to measure tension and compression

Table 7.4. Hall bruge - tension and compression							
Schematic	U_D / U_{IN} equation	Bridge factor	Lin- earity	Active strain gauges			
R1 R2 Um R2 Um Um	$\frac{U_D}{U_{IN}} = \frac{1}{4} * \left(\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{\Delta R_2}\right)$ $\frac{U_D}{U_{IN}} = \frac{1}{4} * k * (\varepsilon_1 - v)$,	No	Two active strain gauges $(R_1 \text{ and } R_{2})$. 1x longitudinal elongation / 1x transverse elongation. One strain gauge lies in principal and the other in transverse direction.			

Table 7.4: Half bridge - tension and compression

Full bridge

Used to measure bending

Schematic	U_D / U_{IN} equation	Bridge factor	Lin- earity	Active strain gauges
R1 Unet R2 Unet R2 Une R2 Une	$\frac{U_D}{U_{IN}} = \frac{1}{4} * \left(\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{\Delta R_2}\right)$ $\frac{U_D}{U_{IN}} = \frac{1}{4} * k * (\varepsilon_1 - \varepsilon_2)$			Four (4) active strain gauges (R_1R_4) . Elongation (and compression) is in the same magnitude; the compression of R_2 and R_4 gives an opposite signal as from elongation of R_1 and R_3 .

Table 7.5: Full bridge - bending

Used to measure tension and compression

Table 7.6: Full bridge - tension	and compression

Schematic	U _D / U _{IN} equation	Bridge factor	Lin- earity	Active strain gauges
R1 R2 Um+ R2 Um- R4	$\frac{U_D}{U_{IN}} = \frac{1}{4} * \left(\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{\Delta R_1}\right)$ $\frac{U_D}{U_{IN}} = \frac{1}{4} * k * (\varepsilon_1 - \varepsilon_2)$		$\frac{R_3}{3} - \frac{\Delta R_4}{R_4}$	Four active strain gauges (R ₁ , R ₂ , R ₃ and R ₄); 1x longi- tudinal elongation, 2x trans- verse elongation. One pair of strain gauges lies in prin- cipal and the other pair in transverse direction.

7.3.2 Changing the channel settings in the channel setup

All channel settings (except the sample rate and the bit resolution) can also be changed in the individual Channel Setup (see Fig. 7.44) which can be accessed via push button (11) (see Fig. 7.2 or Table 7.1).

dd Channel - Statistics								
FIR Filters Statistics	*	AVG	МАХ	MIN	RMS	ACRMS	Peak-Peak	SUM
Basic Math								
Formula FFT		MIN Time	MAX Time	COUNT	Variance	сv	Peak	Crest
Filters								
IIR Filters	*	Calculation ty	pe Reset on r	neasurement	start			4
Advanced Math		Window size	1		S	🚽 Ove	rlap_0%	4
Cepstrum/Quefrency	\overleftrightarrow							
Correlation	\overleftrightarrow	Group name	Statistics	1]
Rosette								
Percentile Measurement								
Frequency Measurement								
Constant Percentage Bandwidth (CPB) Analysis								
							Cancel	Add

Fig. 7.44: Channel setup of a TRION3-1820-MULTI channel

The main advantage compared to the parameter manipulation in the *Data channels* menu is that a wide preview window is available. With that, the user can see the affection of different parameter changes (i.e. range and scaling) on the input signal in real time. To swap between the channel setups of different channels use the arrows (<<>>) in the upper right corner and to close the channel setup use the *X* next to the arrows. In addition, depending on the mode, a connector pinout is available.

7.3.3 Current measurement using TRION modules

Different TRION modules can be used for current measurement. Current signals can be connected directly to TRION-1603-LV-6-L1B, TRION-1620-LV-6-L1B and TRION-1620-ACC-6-L1B modules and measure the current via an integrated 10 Ω shunt resistor.

Other modules can also be used for current measurements but need an external shunt resistor to support this functionality. These modules are the following: TRION-1603-LV-6-BNC, TRION-1620-LV-6-BNC, TRION-1620-ACC-6-BNC, TRION-1820-dLV, TRION-1600-dLV and TRION-2402-x. The TRION-1820-PA module is excluded from this consideration.

Modules that require an external shunt resistor for the current measurement contain a predefined shunt resistor selection in the Channel List (see Fig. 7.45) if *Current Amplifier Mode* is selected.

CURRENT SET	TTINGS			
Input Type	Single-ended			
Shunt Resistor	Shunt 1		50	Ohm 📕
Pmax / Imax	0.25	W	70.71	mA 📶

Fig. 7.45: External Shunt resistor selection in the Channel Setup

From the technical point of view, the current measurement via an (external) shunt resistor is the measurement of the potential difference that is caused by the current on the shunt resistor.

$$I = \frac{U}{R}$$

The voltage U is measured, the resistance R is known and therefore the Current I can be determined. Thus, if the current is measured via an external shunt, a voltage signal representing the potential difference caused by the current on the external shunt is provided to the TRION-module. This voltage is rescaled to the current again by using the formula above. This rescaling is done by OXYGEN. Therefore, the resistance must be known and can be selected in the drop-down list from Fig. 7.45.

For sure, any shunt resistor can be used and not the ones contained in the drop-down list. If a shunt is used whose resistance is not contained in the list, the rescaling of the voltage signal representing the current can be done manually in *Voltage* Amplifier mode proceeding the following steps:

• Set the Amplifier Mode to Voltage (see Fig. 7.46):

AMPLIF	IER OPTIONS	
Mode	Voltage	

Fig. 7.46: Voltage measurement mode

• Change the Unit to A (Ampere) and enter the resistance of the shunt resistor as Scaling factor, i.e. 50 Ω (see Fig. 7.47).

SENSOR SCALING				
Scaling	2-p	oint		
• Scal	ling	O Sensitivity		
Unit	Α			
Scaling	50		A/V	

Fig. 7.47: Entering the shunt resistance as scaling factor

• With these settings, the rescaling of the voltage signal to the represented current is done in the same manner as in Current mode with the corresponding shunt resistor selected in the drop-down

list. Thereby, the voltage signal is multiplied with the entered *Scaling* factor and the result of this equation is the corresponding current:

corresponding current I = $scaling \ factor \ R*measured \ voltage \ U$

• Considering the physical units of this equation will clarify that:

$$[A] = \left[\frac{A}{V} * V\right]$$

If a TRION module with integrated 10 Ω shunt is used for the current measurement, this consideration can be neglected! This applies only for current measurements via external shunt resistors.

7.4 Mathematical channels

OXYGEN enables the user to easily create Formula (see *Formula channel*), Statistics (see *Statistics channel*), Filters (see *IIR Filter channel*), FFT (see *FFT channels*) or (Strain gauge) Rosette channels (see *Rosette (strain gauge) channels*) which are calculated in real time. For details about the Psophometer calculation, refer to *Psophometer*. The Swept sine Analysis calculation is explained in *Swept Sine Analysis*.

To create a new channel, the user needs to click on the *Add* button in the lower left corner (marked red in Fig. 7.48) and a pop-up window will appear where the user can select if he wants to create a Formula, Statistics, Filter channel, a FFT or Rosette calculation. If a Statistics or Filtering channel or a FFT or Rosette calculation shall be created, the user must select the desired input channel(s) in the *Channel List* before clicking on the *Add* button. The created channels will show up in the *Math* channel section in the *Data Channels* menu.

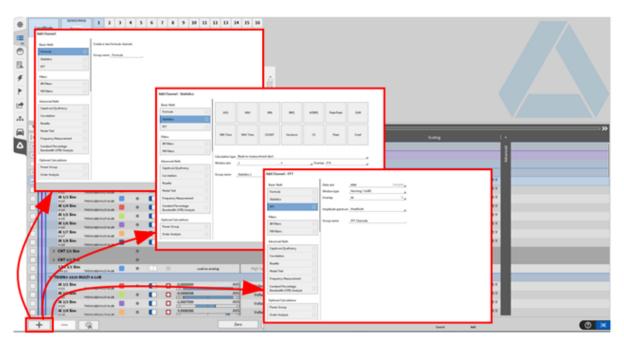


Fig. 7.48: Creation of a math channel

To delete previously added channels, first select the desired channels ((1) in Fig. 7.49), then click the "Delete button" ((2) in Fig. 7.49). A confirmation window ((3) in Fig. 7.49) will appear, requiring you

to confirm the deletion. This step helps prevent accidental removal of channels that may have been selected unintentionally.

Abb. 7.5

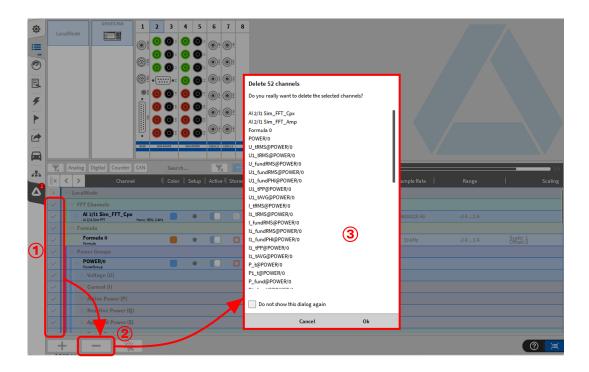


Fig. 7.49: Deleting math channels

Note: The *Calculation Setup* stores the information if a Formula, a Statistics or a Filtering channel was created lastly and selects the respective one automatically when the window is opened the next time.

Add Channel - Statistics								
FIR Filters	*							
Statistics	*	AVG	МАХ	MIN	RMS	ACRMS	Peak-Peak	SUM
Basic Math	1							
Formula	2							
FFT	☆	MIN Time	MAX Time	COUNT	Variance	CV	Peak	Crest
Filters								
IIR Filters	*	Calculation ty	pe Reset on r	measurement	start			
Advanced Math		Window size				Ove	erlap 0%	A
Cepstrum/Quefrency								
Correlation	1	Group name	Statistics	1				
Rosette								
Percentile Measurement	\overleftrightarrow							
Frequency Measurement								
Constant Percentage Bandwidth (CPB) Analysis								
							Cancel	Add

Fig. 7.50: Add favorites

For quick access to certain calculations there is a possibility to mark them as favorite (see Fig. 7.50). When a calculation is marked as a favorite, it is moved to the beginning of the list of available channels, so calculations that need to be used regularly can be selected quickly without searching for them in the list. When a calculation marked as a favorite is deactivated, it is automatically placed back in the list of all available calculations.

7.4.1 Basic math

Formula channel

For creating a Formula math channel, the user must click on the *Add* button in the lower left corner (marked red in Fig. 7.48) and select *Formula* (see Fig. 7.51).

It is possible to assign a group name to summarize several formulas in groups in the channel list for a better overview. Under "Channels", it is possible to enter the number of formulas to be added to the channel list and to add up to 100 formula channels at once (see Fig. 7.51).

Basic Math		Create a new	formula channe	ι.		
Formula	☆					
Statistics	☆	Group name Channels	Formula			
FFT			-			
ilters						
IIR Filters						
FIR Filters	☆					
dvanced Math						
Cepstrum/Quefrency	$\overrightarrow{\ }$					
Correlation						
Rosette	☆					
Percentile Measurement						
Frequency Measurement	☆					
Constant Percentage Bandwidth (CPB)	\$					

Fig. 7.51: Pop-up window for creating a Formula channel



Fig. 7.52: Formula channel setup - overview

No.	Name	Description
1	Active button	Setting a channel active or inactive; An active channel can be displayed in an instrument, used in a math channel, and can be recorded, an inactive channel not
2	Channel name	Individual channel name; Can be changed individually
3	Physical unit	Physical unit of the channel, can be changed in the channel setup
4	Command line	Type your desired formula here
5	Add button	Adds the individual channel to the command line; Channels can be added to the command line by drag and drop, too
6	Functions	Available mathematical and logical functions can be selected here. Using the back (a) and forward (b) buttons the user can swap between Standard, Trigonometric, Logic and Miscel- laneous functions. For a description and the correct syntax of the individual functions, refer to <i>Mathematical and logical func-</i> <i>tions</i> .
7	Keys and Operators	Numerical pad and mathematical operators; Can also be entered via the keyboard.
8	Preview window	Real Time preview of the calculation
9	Enum label editor	Enables displayed text labels for set values of this formula. Logic operations are recommended for non-digital channels.

Table 7.7: Push buttons in the formula channel setup – overview

Note: It is possible to assign channels with different sample rates to one formula channel. The sample rate of the formula channel will be set to the highest input channel sample rate. The samples of channels with lower sample rates will not be interpolated, but the last value will be repeated according to the fastest sample rate until the channel is updated.

Mathematical and logical functions

Function	Description	Syntax
е	Euler's number	е
π	Constant Pi	рі
min	Minimum of up to 128 values	min(x,yn)
max	Maximum of up to 128 values	max(x,yn)
abs	Absolute value	abs(value)
x^y	Exponential function with arbitrary basis	pow(x,y)
e^	Exponential function with basis e	exp(x)
2^	Exponential function with basis 2	exp2(x)
In	Natural logarithm to basis e	ln(x)
log	Common logarithm to basis 10	log(x)
V	Square root	sqrt(x)
?	Cube root	cbrt(x)

Table 7.8: Standard mathematical operators - description and syntax

Table 7.9: Trigonometrical operators - description and syntax

Function	Description	Syntax
sin	Sinus based on sin(w*t+phi), e.g. "2*pi*time+pi/180*5"	sin(x)
asin	Arc sine	asin(x)
sinh	Hyperbolic sine	sinh(x)
asinh	Arc hyperbolic sine	asinh(x)
cos	Cosine	cos(x)
acos	Arc cosine	acos(x)
cosh	Hyperbolic cosine	cosh(x)
acosh	Arc hyperbolic cosine	acosh(x)
tan	Tangent	tan(x)
atan	Arc tangent	atan(x)
tanh	Hyperbolic tangent	tanh(x)
atanh	Arc hyperbolic tangent	atanh(x)

Func- tion	Description	Syntax
<	If 'value1' is less than 'value2', the result is 1.0 else 0.0	value1 < value2
≤	If 'value1' is less than or equals 'value2', the re- sult is 1.0 else 0.0	value1 <= value2
>	If 'value1' is greater than 'value2', the result is 1.0 else 0.0	value1 > value2
2	If 'value 1' is greater than or equals 'value 2', the result is 1.0 else 0.0	value1 >= value2
=	If 'value 1' equals 'value 2', the result is 1.0 else 0.0 (Two NaNs do not compare equal	value1 == value2
≠	If 'value 1' is different than 'value 2', the result is 1.0 else 0.0	value1 != value2
and	Logic and: value1 != 0.0 and value2 != $0.0 \rightarrow 1.0$ value1 = 0.0 and value2 != $0.0 \rightarrow 0.0$ value1 != 0.0 and value2 = $0.0 \rightarrow 0.0$ value1 = 0.0 and value2 = $0.0 \rightarrow 0.0$	value1 and value2
or	Logic or: value1 != 0.0 or value2 != $0.0 \rightarrow 1.0$ value1 = 0.0 or value2 != $0.0 \rightarrow 1.0$ value1 != 0.0 or value2 = $0.0 \rightarrow 1.0$ value1 = 0.0 or value2 = 0.0 $\rightarrow 0.0$	value1 or value2
not	Logic negation: If value = 0.0, the result is 1.0, else 0.0	not value
if	If condition is true, the result is 'true_val', other- wise 'false_val'	if(condition,true_val,false_val)
isnan	If value is NaN, result is 1.0, 0.0 otherwise	isnan(value)

Table 7.10: Logical operators - description and syntax

Function	Description	Syntax
ecnt ¹	Count number of edges on condition; condition is mandatory, rearm and reset parameter optional	ecnt(cond,rearm,reset)
hold ²	Hold value at trigger condition; value and condi- tion parameters are mandatory, init and rearm optional	hold(value,cond,init,rearm)
stopwatch ³	Measure the timespan between two conditions in seconds; start and stop condition is both mandatory, reset is optional	stop- watch(start_cond,stop_cond, reset)
measdiff ⁴	Measure the value difference of one channel be- tween two conditions	measdiff(val,cond1,cond2)
period ⁵	Measure the period duration in seconds be- tween consecutive conditions with optional rearm condition	period(cond,rearm)
dutycycle ⁶	Measure the dutycycle (from 0 to 1) between consecutive conditions with optional rearm condition	dutycycle(cond,rearm)
edge ⁷	Generate positive edge on cond with rearm con- dition	edge(cond,rearm)

Table 7.11: Measurement functions – description and syntax

Legend to Table 7.11

- ¹ For a detailed description of the ecnt-function, refer to *Edge-count function (ecnt)*.
- ² For a detailed description of the hold-function, refer to *Hold function (hold)*.
- ³ For a detailed description of the stopwatch-function, refer to *Stopwatch function (stopwatch)*.
- ⁴ For a detailed description of the measdiff-function, refer to *Measdiff function (measdiff)*.
- ⁵ For a detailed description of the period-function, refer to *Period function (period)*.
- ⁶ For a detailed description of the dutycycle-function, refer to *Dutycycle function (dutycylce)*.
- ⁷ For a detailed description of the edge-function, refer to *Edge function (edge)*

Function	Description	Syntax
rmin ¹	Measure rolling overall minimum of a channel during a measurement with optional reset con- dition	rmin(value,reset)
rmax ¹	Measure rolling overall maximum of a channel during a measurement with optional reset con- dition	rmax(value,reset)
ravg ¹	Measure rolling overall average of a channel dur- ing a measurement with optional reset condition	ravg(value,reset)
rrms ¹	Measure rolling overall RMS of a channel during a measurement with optional reset condition	rrms(value,reset)
rsum ¹	Measure rolling overall sum of a channel during a measurement with optional reset condition	rsum(value,reset)
racrms ¹	Measure rolling overall ACRMS of a channel dur- ing a measurement with optional reset condi- tion; Not included in the selection and must be typed manually	racrms(value,reset)
rp2p ¹	Measure rolling overall Peak-to-Peak of a chan- nel during a measurement with optional reset condition; Not included in the selection and must be typed manually	Rp2p(value,reset)

Table 7.12: Rolling functions – description and syntax

Legend to Table 7.12

• ¹ For a detailed description of the rolling-overall-functions, refer to *Rolling-overall-functions*

	· · · ·	
Func- tion	Description	Syntax
time ¹	Returns the elapsed time since acquisition (re)start in seconds	time
mtime ¹	Returns the elapsed time since measurement star in seconds	mtime
scnt ¹	Counts the number of samples since acquisition (re)start	scnt
sr ¹	Returns the Sample Rate in Hz	sr
dim	When multiplied to an array channel x * dim, the output shows the current index of the bin. [1,2n]. For scalar the index is 0.	dim
noise	Noise(x), random number [-x x]	noise(x)
chirp	Creates a chirp signal with frequency from f0 to f1 within d seconds.	chirp(f0, f1, d)
sin wave	Creates a sinus wave with frequency f and optional phase phi. By de- fault, a phase shift of 0 rad is applied.	sinwave(f,phi)
cos wave	Creates a cosines wave with frequency f and optional phase phi. By default, a phase shift of 0 rad is applied.	coswave(f,phi)
saw wave	Creates a saw wave with frequency f and optional phase phi. By de- fault, a phase shift of 0 rad is applied.	sawwave(f,phi)
tri wave	Creates a triangle wave with frequency f and optional phase phi. By default, a phase shift of 0 rad is applied.	triwave(f,phi)
pulse wave	Creates a rectangle wave with frequency f , duty cycle d and optional phase phi. By default a phase shift of 0 rad is applied.	pulsewave(f, d, phi)

Table 7.13: Generator operators - description and syntax

¹A channel to which the function refers must be specified, i.e. in the following manner: 'Ref_Ch' * 0 + time

mod	Remainder of division x/y, sign of x	mod(x,y)
noise	Creates Noise signal in the range [-x+x]	noise(x)
atan2	Arc tangent of y/x using signs of arguments to determine the correct quadrant	atan2(y,x)
floor	Rounds x towards minus infinity	floor(x)
ceil	Rounds x towards plus infinity	ceil(x)
round	Round to nearest integer	round(x)
trunc	Round x towards zero	trunc(x)
delay	Delay a signal x for N samples with an optional initial value y0 by de- fault 0	delay(x,N,y0)
lerp	Continue a series of values with $lerp(a,b,t)=(1-t)*a+t*b$. This allows you to interpolate or continue the straight line for any t values. An ex- ample is the starting value $a=10$, the second value is 15. lerp equals a for t=0, lerp equals b for t=1. For t values between 0 and 1, interpo- lation takes place between a and b.	lerp(a,b,t)

Table 7.14: Miscellaneous operators - description and syntax

Edge-count function (ecnt)

Syntax: ecnt(cond,rearm,reset)

The Edge-count function counts the number of fulfilled *cond*itions. If desired, a Rearm event which must be passed before a *cond*ition can be fulfilled again, can be defined. A *Reset* event can be defined optionally, too. *Cond*ition, *Rearm* and *Reset* can be applied to *Rising* and *Falling* signal edges. *Rising Edges* can be defined by using the logical operators > and ≥. Falling Edges can be defined by using the logical operators < and ≤.

The following examples will explain the functionality (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

ECNT_Cond = ecnt('SIGNAL'>800)

Every time the channel *SIGNAL* passes *800* with a *Rising Edge (>)*, the channel *ECNT_Cond* increases by 1 (see Fig. 7.53).

The reason why the ecnt-function increases by more than 1 in Fig. 7.53 is that the signal is floating around the *Cond*ition level several times due to noise. This can be seen in the magnification in Fig. 7.53. This is also the reason why the ecnt-function counts on *Falling Edges* as well. To avoid disturbed results caused by signal noise, a *Rearm* Level can be defined. A suitable example can be found in the following section and in Fig. 7.54.

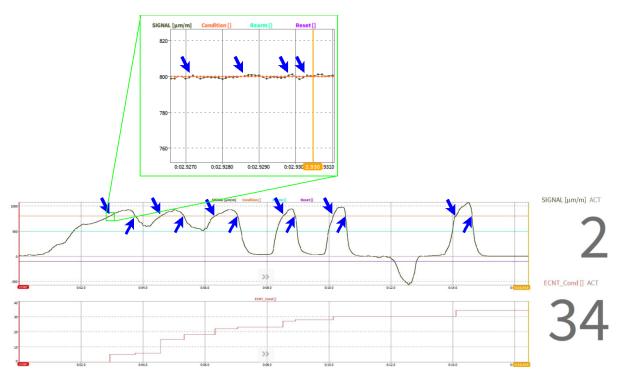


Fig. 7.53: ECNT-function with Condition only

ECNT_Cond_Rearm = ecnt('SIGNAL'>800,'SIGNAL'<500)

If the channel *SIGNAL* passes *800* with a *Rising Edge (>)*, the channel *ECNT_Cond_Rearm* increases by 1. To avoid unwanted increments caused by noise on the signal, the channel *SIGNAL* must pass *500* with a *Falling Edge (<)* before the channel *ECNT_Cond_Rearm* counts again when the channel *SIGNAL* passes *800* with a *Rising Edge (>)* (see Fig. 7.54).

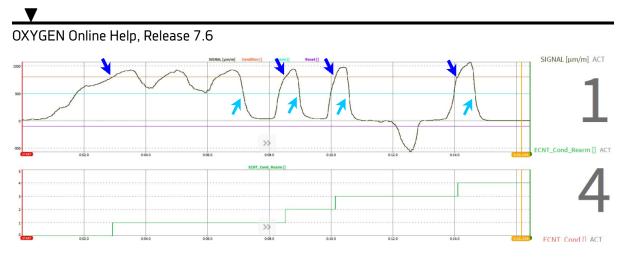


Fig. 7.54: ECNT-function with Condition and Rearm

ECNT_Cond_Rearm_Reset = ecnt('SIGNAL'>800,'SIGNAL'<500,'SIGNAL'<-100)

If the channel *SIGNAL* passes *800* with a *Rising Edge (>)*, the channel *ECNT_Cond_Rearm_Reset* increases by 1. To avoid unwanted increments caused by noise on the signal, the channel *SIGNAL* must pass *500* with a *Falling Edge (<)* before the channel *ECNT_Cond_Rearm_Reset* counts again when the channel *SIGNAL* passes *800* with a *Rising Edge (>)*. If the Channel *SIGNAL* passes *-100* with a *Falling Edge (<)*, the channel *ECNT_Cond_Rearm_Reset* is set to *0* (see Fig. 7.55).

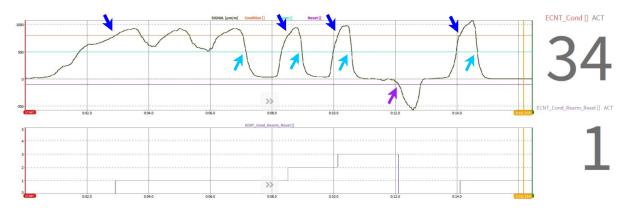


Fig. 7.55: ECNT-function with Condition, Rearm and Reset

Hold function (hold)

Syntax: hold(value,cond,init,rearm)

The hold-function requires two input channels. One channel is the *Signal* channel and one channel the *Condition* channel. If the *Condition* channel fulfills a certain *Cond*ition, the actual value of the *Signal* channel is stored to the hold-function channel. If desired, an *Init*ial value and a *Rearm* event which must be passed before a *Cond*ition can be fulfilled again, can be defined. *Cond*ition and *Rearm* can be applied to *Rising* and *Falling* signal edges. *Rising Edges* can be defined by using the logical operators > and ≥. *Falling Edges* can be defined by using the logical operators < and ≤.

The following examples will explain the functionality (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

HOLD_VAL_COND = hold('SIGNAL_VAL','SIGNAL_COND'>5)

If the channel *SIGNAL_COND* passes 5 with a *Rising Edge (>)*, the actual value of the channel *SIGNAL_VAL* is stored to the channel *HOLD_VAL_COND*. The value of the channel *HOLD_VAL_COND* is *NaN* before

reaching the Condition the first time (see Fig. 7.56).

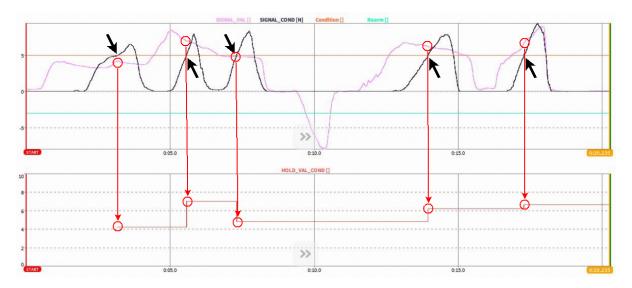
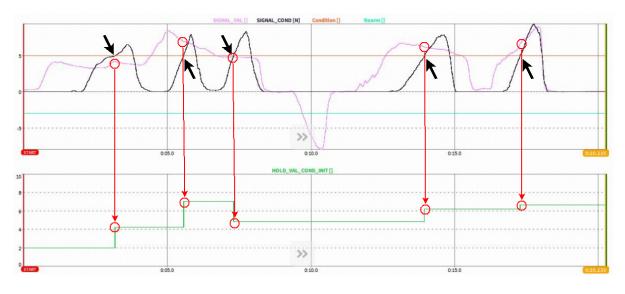



Fig. 7.56: HOLD function with Condition

HOLD_VAL_COND_INIT = hold('SIGNAL_VAL','SIGNAL_COND'>5,2)

If the channel *SIGNAL_COND* passes 5 with a *Rising Edge (>)*, the actual value of the channel *SIGNAL_VAL* is stored to the channel *HOLD_VAL_COND_INIT*. The *Init*ial value of the channel *HOLD_VAL_COND_INIT* is 2 before reaching the *Cond* ition the first time (see Fig. 7.57).

HOLD_VAL_COND_INIT_REARM = hold('SIGNAL_VAL','SIGNAL_COND'>5,2,'SIGNAL_VAL'>-3)

If the channel *SIGNAL_COND* passes 5 with a *Rising Edge* (>), the actual value of the channel *SIGNAL_VAL* is stored to the channel *HOLD_VAL_COND_INIT_REARM*. The *Init*ial value of the channel *HOLD_VAL_COND_INIT_REARM* is 2 before reaching the *Cond*ition the first time. In addition, the channel *SIGNAL_VAL* must pass -3 with a *Rising Edge* (>) before the channel *HOLD_VAL_COND_INIT_REARM* updates again when the channel *SIGNAL_COND* passes 5 with a *Rising Edge* (>) (see Fig. 7.58).

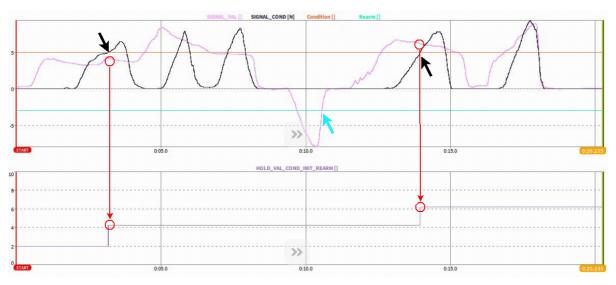


Fig. 7.58: HOLD function with Condition, Initial value and Rearm level

Stopwatch function (stopwatch)

Syntax: stopwatch(start_cond,stop_cond, reset)

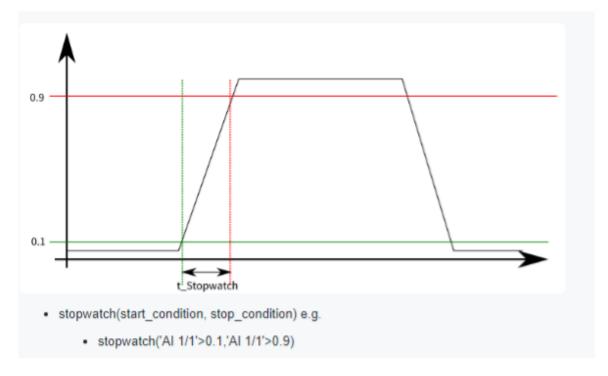


Fig. 7.59: Schematic explanation of the stopwatch function

The stopwatch function returns the timespan in seconds between two conditions (*start_cond* and *stop_cond*). Both conditions may refer to the same channel or to different channels. An optional *reset* condition resets the stopwatch function to *NaN* until the next *start_cond* occurs.

• If the *reset* is not specified, the stopwatch-function restarts to count at 0s automatically at every new *start_cond*.

- If the *reset* is specified as 0 (i.e. *stopwatch* (*start_cond,stop_cond,0*)), the stopwatch function does not restart to count at 0s when a new *start_cond* occurs but continues counting from the last value.
- If the reset is specified differently, i.e. as *signal<0*, the stopwatch function is reset to *NaN* if this certain event occurs and starts counting from 0s if a new *start_cond* occurs.
- If the *start_cond* appears again before a *stop_cond* is reached, the *start_cond* will be ignored.
- If *start_cond* is equal to the *stop_cond*, the stopwatch returns 0s.

The following examples will clarify the functionality of the stopwatch function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

STOPWATCH_cond1_cond2 = stopwatch('SIGNAL1'>100,'SIGNAL1'>800)

The stopwatch function (dark blue graph in Fig. 7.60) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Fig. 7.60) exceeds 100 and stop to measure the time in seconds if the channel *SIGNAL1* exceeds 800. If *SIGNAL1* will exceed 100 again, the stopwatch function restarts to measure at 0s.

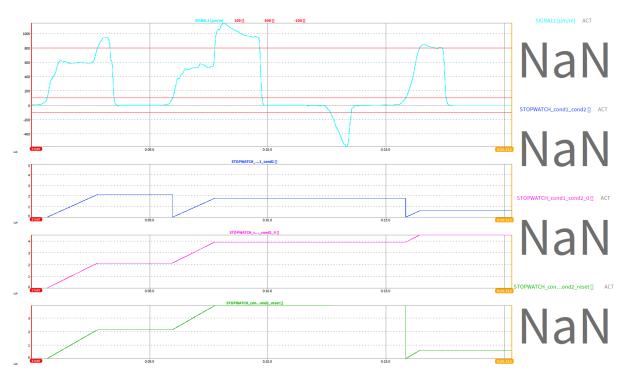


Fig. 7.60: Stopwatch with start and stop condition

STOPWATCH_cond1_cond2_0 = stopwatch('SIGNAL1'>100,'SIGNAL1'>800,0)

The stopwatch function (pink graph in Fig. 7.61) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Fig. 7.61) exceeds 100 and stop to measure the time in seconds when the channel *SIGNAL1* exceeds 800. If *SIGNAL1* will exceed 100 again, the stopwatch function restarts to measure from the last value and NOT reset.

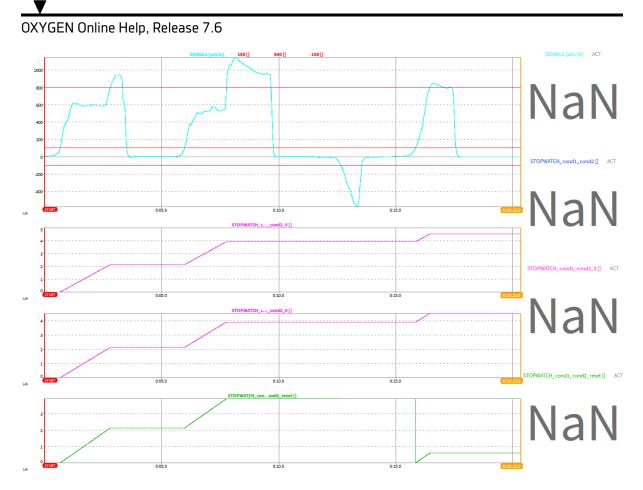


Fig. 7.61: Stopwatch with start and stop condition, no reset

STOPWATCH_cond1_cond2_reset = stopwatch('SIGNAL1'>100,'SIGNAL1'>800,'SIGNAL1'<-100)

The stopwatch function (green graph in Fig. 7.62) will start to measure the time in seconds if the channel *SIGNAL1* (light blue graph in Fig. 7.62) exceeds 100 and stop to measure the time in seconds when the channel *SIGNAL1* exceeds 800. If (and only if) *SIGNAL1* decreases below -100, the stopwatch function will reset to *NaN* and restart to measure from 0s if *SIGNAL1* exceeds 100 again.

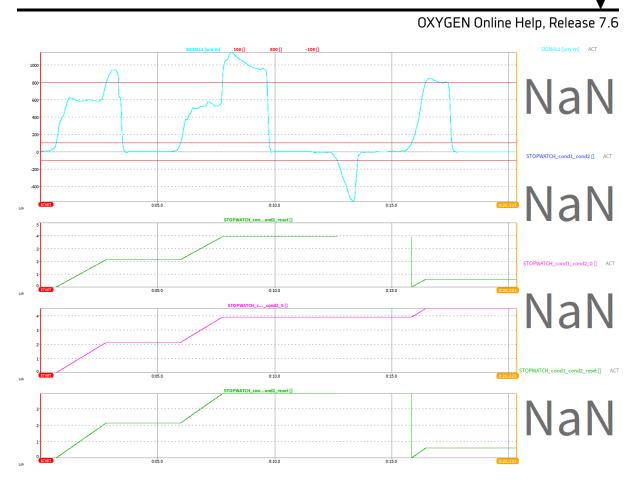


Fig. 7.62: Stopwatch with start and stop condition, reset specified

Measdiff function (measdiff)

Syntax: measdiff(val,cond1,cond2)

The measdiff function returns the value difference between *cond1* and *cond2* of the signal *val*. The three parameters may refer to same channel or each to a different channel.

The measdiff function will return *NaN* before *cond2* is reached for the first time.

- If *cond1* and *cond2* are triggered several times during one measurement, the measdiff function will be updated after *cond2* is reached again.
- If *cond1* is reached several times before *cond2* is reached, the measurement will start when *cond1* is reached for the first time and will not be reset if *cond1* is reached again.

The following examples will clarify the functionality of the measdiff function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

MEASDIFF_val_cond1_cond2 = measdiff('SIGNAL2','SIGNAL1'>100,'SIGNAL1'>800)

The measdiff function (purple graph in Fig. 7.63) will measure and return the value difference of *SIGNAL2* (green graph in Fig. 7.63) triggered by the following conditions: The measurement is initialized when *SIGNAL1* (light blue graph in Fig. 7.63) exceeds 100 and stopped when *SIGNAL1* exceeds 800.

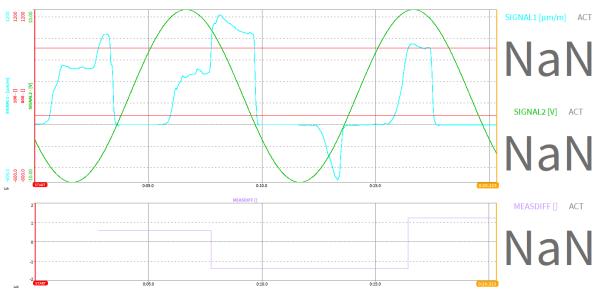


Fig. 7.63: Measdiff function

Period function (period)

Syntax: period(cond,[rearm])

The period function returns the period time of a signal in seconds. The signal to which the function shall be applied to must be specified in the *cond* in combination with the period threshold which is normally zero.

An optional *rearm* level will suppress distortion caused by signal noise. The *rearm* can be applied to the same or to a different signal.

The following examples will clarify the functionality of the period function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

PERIOD_cond = period('SIGNAL'>0)

The period function (green graph in Fig. 7.64) will measure and return the period time of *SIGNAL* (brown graph in Fig. 7.64) for the condition that the *SIGNAL* level is higher than 0. As the *SIGNAL* is a pure sine wave with frequency 0.5 Hz, its period time should be 2 seconds. But due to noise on the signal, the zero-level is crossed several times (see Fig. 7.65) and causes a wrong measurement result when determining the period time. To suppress the influence of noise on the period time determination, a rearm level can be optionally added. This is explained in the next section.

PERIOD_cond_rearm = period('SIGNAL'>0,'SIGNAL'>-5)

The period function (green graph in Fig. 7.64) will measure and return the period time of *SIGNAL* (brown graph in Fig. 7.64) for the condition that the *SIGNAL* level is higher than 0. As period time measurements can be disturbed by noise, a rearm level is added in this example to avoid the influence of noise to the signal. The rearm level is set to the following condition: The level of the *SIGNAL* must exceed -5. This means that the *SIGNAL* must exceed -5 before the condition *SIGNAL>0* is detected again. With this optional rearm level the influence of noise on the period time measurement that can be seen in the green graph of Fig. 7.64 is suppressed and the detected period time is always 2s as it can be seen in the blue graph of Fig. 7.64.

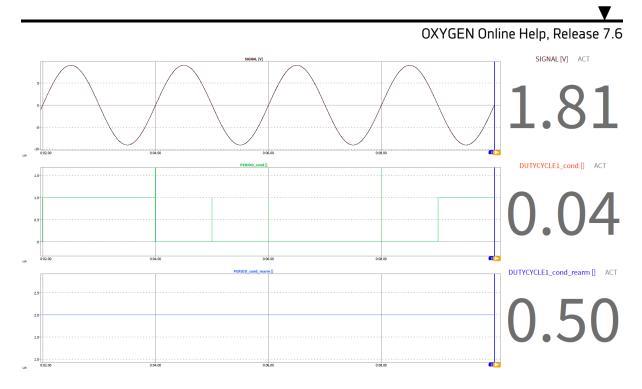


Fig. 7.64: Period function

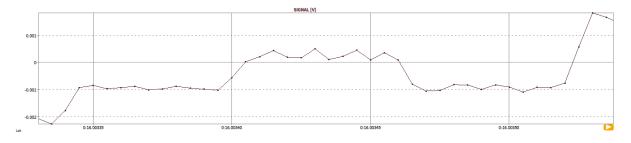


Fig. 7.65: Noise disturbing the correct functionality of the period determination

Dutycycle function (dutycylce)

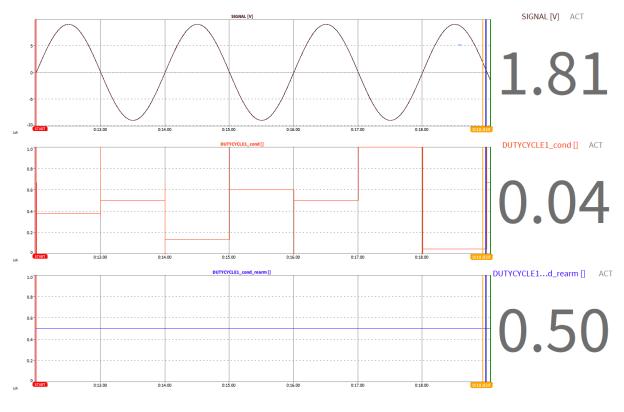
Syntax: dutycylce(cond,[rearm])

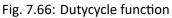
The dutycycle function returns the dutycycle of a signal. The signal to which the function shall be applied to must be specified in the *cond* in combination with the dutycylce threshold.

An optional *rearm* level will suppress distortion caused by signal noise. The *rearm* can be applied to the same or to a different signal.

The following examples will clarify the functionality of the dutycycle function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

DUTYCYCLE_cond = dutycycle('SIGNAL'>0)


The dutycylce function (orange graph in Fig. 7.66) will measure and return the dutycycle of *SIGNAL* (brown graph in Fig. 7.66) for the condition that the *SIGNAL* level is higher than 0. As the *SIGNAL* is a pure sine wave, its duty cycle should be 0.5 (or 50%). But due to noise on the signal, the zero-level is crossed several times (see Fig. 7.67) and causes a wrong measurement result when determining the dutycycle. To suppress the influence of noise on the dutycycle determination, a rearm level can be optionally added. This is explained in the next section.


V

OXYGEN Online Help, Release 7.6

DUTYCYCLE_cond_rearm = dutycycle('SIGNAL'>0,'SIGNAL'>-5)

The dutycylce function (orange graph in Fig. 7.66) will measure and return the dutycycle of *SIGNAL* for the condition that the *SIGNAL* level is higher than 0. As dutycycle measurements can be disturbed by noise, a rearm level is added in this example to avoid the influence of noise to the signal. The rearm level is set to the following condition: The level of the *SIGNAL* must exceed -5. This means that the *SIGNAL* must exceed -5 before the condition *SIGNAL* >0 is detected again. With this optional rearm level the influence of noise on the dutycylce measurement that can be seen in the orange graph of Fig. 7.67 is suppressed and the detected dutycycle is always 0.5 (50%) as it can be seen in the blue graph of Fig. 7.67.

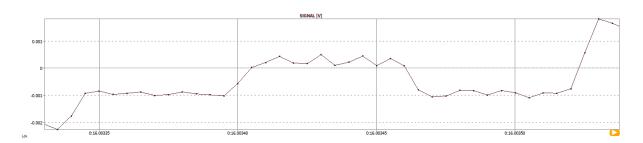
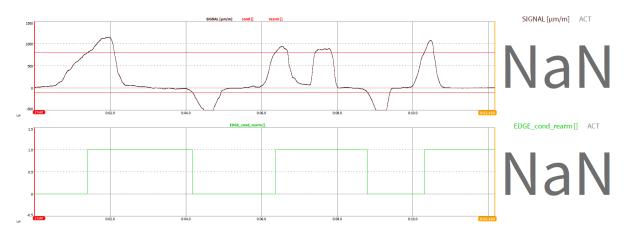
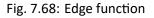


Fig. 7.67: Noise disturbing the correct functionality of the dutycycle determination

Edge function (edge)


Syntax: edge(cond,rearm)


The edge function returns a rising egde from 0 to 1 in case the *cond*ition is passed and a falling edge from 1 to 0 if the *rearm* is passed.

The following examples will clarify the functionality of the edge function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN):

EDGE_cond_ream = edge('SIGNAL'>800, 'SIGNAL'<-100)

The edge function (green graph in Fig. 7.68) will return a rising edge from 0 to 1 for the condition that the *SIGNAL* level exceeds 800 (brown graph in Fig. 7.68). In case the *SIGNAL* falls below -100, the edge function will return a falling edge from 1 to 0.

Combination of edge function and other formulas

In case a formula that does not contain a rearm level as optional parameter, such as the stopwatch function (see *Stopwatch function (stopwatch)*) or the measdiff function (see *Measdiff function (measdiff)*), the edge function (see *Edge function (edge)*) can be used to generate this rearm level.

The following example will clarify the functionality by demonstration the combination of the edge and stopwatch function (corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXY-GEN):

The blue signal in Fig. 7.69 will measure the time using the stopwatch between the following two conditions: *cond1* is true if *SIGNAL1* (green signal in Fig. 7.69) exceeds 100. *Cond2* is true if *SIGNAL1* (green signal in Fig. 7.69) exceeds 800.

The formula syntax of the blue signal in Fig. 7.66 is the following:

stopwatch('SIGNAL1'>100,'SIGNAL1'>800)

Due to noise, *cond1* is passed several times which might be undesired. To suppress this influence of noise a rearm level of -100 can be added for cond1 by using the edge function. The result can be seen in the orange graph of Fig. 7.69. In this example, the stopwatch function is only restarted if *SIGNAL1* falls below -100.

The syntax is the following:

stopwatch(edge('SIGNAL1'>100,'SIGNAL1'<-100)>0.5,'SIGNAL1'>800)

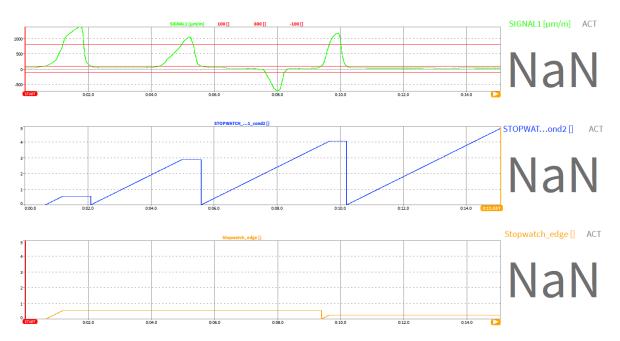


Fig. 7.69: Combination of edge and stopwatch function

Rolling-overall-functions

rmin(value[,reset])

Returns the global minimum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rmax(value[,reset])

Returns the global maximum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

ravg(value[,reset])

Returns the global arithmetic average of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rrms(value[,reset])

Returns the global RMS of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

rsum(value[,reset])

Returns the global sum of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

racrms(value[,reset])

Returns the global ACRMS of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

For details about the ACRMS, refer to *Statistics channel*.

rp2p(value[,reset])

Returns the global peak-to-peak level of the signal specified as *value* from acquisition start until the current instant of time; Is reset at measurement start; Can be optionally *reset* by specifying a *reset* condition; The update rate is equal to the sample rate of the channel with the highest sample rate that is assigned to this formula.

A corresponding dmd-file can be found here: https://ccc.dewetron.com/pl/OXYGEN

Array channels in formulas

Array channels in OXYGEN are data channels (or vectors) that include several data elements for one instance of time, such as harmonics from a powergroup, amplitude spectra of a FFT calculation or a CPB spectrum. Using OXYGEN, Array channels are typically either visualized by using an Array Chart or a Spectrum Analyzer.

Besides time based synchronous and asynchronous channels it is also possible work with array channels in the Formula editor.

Mathematical operations with array channels

The following mathematical operations are supported when using array channels in formulas:

- Basic math operations for arrays with same dimensions supported (see (1) in Fig. 7.70): + * /
- Operations (+ * /) with arrays and constants (see 2) in Fig. 7.70)

In both cases, the output of the formula will be a new array channel.

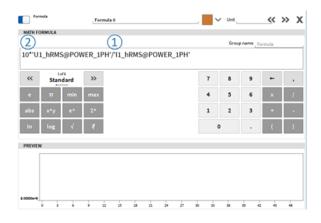


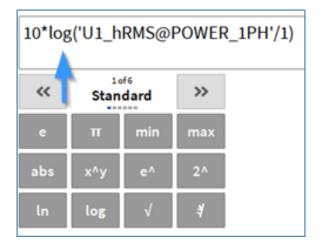
Fig. 7.70: Basic math operations for arrays

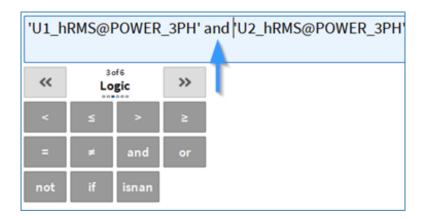
V

OXYGEN Online Help, Release 7.6

In addition to that, it is possible to use the following operators in combination with array channels:

• Standard operators (see Fig. 7.71)




Fig. 7.71: Standard operators in combination with array channels

• Trigonometric operators (see Fig. 7.72)

'U1_hRMS@POWER_1PH'/'I1_hRMS@POWER_1PH' *cos('I1_hPHI@POWER_1PH')										
•	Trigon	f6 metric	>>							
sin	asin	sinh	asinh							
cos	acos	cosh	acosh							
tan	atan	tanh	atanh							

Fig. 7.72: Trigonometric operators in combination with array channels

• Logic operators (see Fig. 7.73)

The formula output will be a new array channel here as well.

Extraction of array elements

It is possible to extract one or several elements from an array channel into a new array channel. The syntax for that is following the Python programming language:

- The first element of an array has always the index 0.
- When extracting several adjacent elements, the first specified index is always inclusive and the last one is always exclusive (see Fig. 7.75)

The following options for extracting array elements exist:

• Extraction of one dedicated element (see Fig. 7.74). The output will be an asynchronous time domain channel

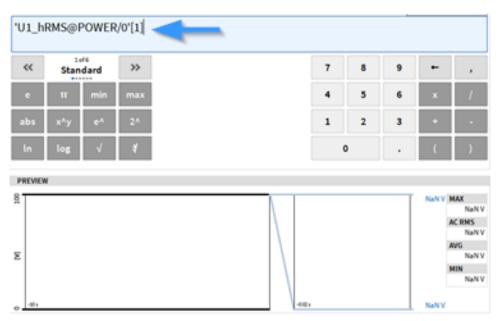


Fig. 7.74: Extraction of one dedicated element

• Extraction of several adjacent elements (see Fig. 7.75). The output will be an array channel with the number of extracted element as new dimension.

dimension.

GEN O	nline H	Help, F	Releas	e 7.6				
	'U1_hl First							
	~	Stan		>>		7	8	9
	e	π	min	max		4	5	6
	abs	x^y	e^.	2.4		1	2	3
	In	log	1	4		(0	

• Extraction of several adjacent elements with a step size between the elements to be extracted (see Fig. 7.76). The output will be an array channel with the number of extracted element as new

Fig. 7.75: Extraction of several adjacent elements

Fer	mula		Forms	da O		 ~	Unit 1	/	_<<	»	1
MATH FO	RMULA										
							Group	name_p	ormula		
U1_h	RMS@P	OWER	_1PH'[0	:10:2)							
«	Stand	lard	>>			7	8	9	+		
e	π	min	max			4	5	6	×		1
abs	x^y	e^	2.4			1	2	3	+		•
In	log	1	4			0)		- ()
REVIEW	v										
400											
200					 	 					
0		0			2		3	_	4		_

Fig. 7.76: Extraction of several adjacent elements with step size between the elements to be extracted

Creation of arrays with constants

Last but not least it is possible to create array channels with constant elements (see Fig. 7.77). The update rate can be defined by adding a time domain channel and multiplying it with zero. The array will then have the same update rate as the time domain channel.

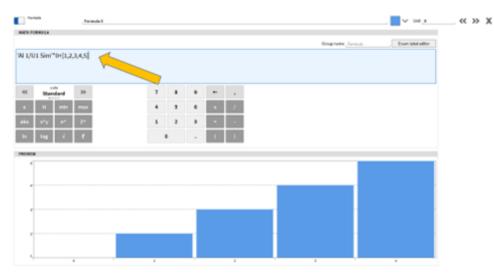


Fig. 7.77: Creation of arrays with constant elements

d Channel - Statistics								
lasic Math								
Formula	- <u>\$</u> 2	AVG	MAX	MIN	RMS	ACRMS	Peak-Peak	SUM
Statistics	습							
FFT	会							
iters		MIN Time	MAX Time	COUNT	Variance	CV	Peak	Crest
IR Filters	\$							
FIR Filters	\$	l I						
dvanced Math		Calculation type						
Cepstrum/Quefrency	☆	Window size	1		5	Overlag	0%	
Correlation		Group name	Statistics 1					
losette	-							
fodal Test	-							
Frequency Measurement	\$							
Constant Percentage Bandwidth (CPB) Analysis	☆							
ptional Calculations								
ptional Calculations Power Group	☆							

Statistics channel

Fig. 7.78: Pop-up window for creating a statistics channel

After clicking on the *Add* button, the *Calculation Setup* window will appear (see Fig. 7.78). For the creation of a Statistics channel, the user must select the desired input channel before clicking on the *Add* button. The user can select several input channels simultaneously to create several statistic channels

with the same settings at once. In the *Calculation Setup*, the user can define which statistics shall be calculated for the input channel(s). The user may select several statistical values. An individual channel for each value will be created afterwards. Select if the calculation should be carried on continuously (since acquisition start), if the calculation should be reset on recording start or if an overall value (single value) over the recording duration should be calculated. After that a time interval (Window Size) and optional overlap for the calculation of the desired value must be defined. Furthermore, the user can define a *Group name* in which several channels can be summarized in the *Data Channels* menu. After pressing enter, the channel will appear in the *Data Channels* menu. The defined channel parameters can be changed afterwards in the Channel Setup (see Fig. 7.79:).

Calculation type	Description	Parameters
Reset on measurement start	Resets calculation of statistics at mea- surement start.	Window size Overlap
Continuous	Will not be reset at measurement start	Window size Overlap
Overall	Calculates only one value over all ac- quired data points. Is visible as a hori- zontal line in a recorder.	None
Triggered	Starts the calculation of a statistic on a trigger event. Trigger channels, rising edge, falling edge, trigger levels and the stop mode can be defined. The stop mode can be retrigger, stop trigger or duration.	Start trigger channel Start trigger level Stop mode Stop trigger channel Stop trigger level
Running	Inherits the sample rate of the chan- nel the statistic is for. Looks back the manually set window time at every new incoming sample and calculates the statistic for this window. Usually has many samples in one window size.	Window size

Y	Analog Digital Counter CAN Search	A 1,01 Sim Statistics A 1,01 Sim Statistics A 1,01 Sim_RMS (2)	, <mark> </mark>
-	V LocalNode	STATISTICS CHANNEL OPTIONS	SCALING
	✓ Statistics 1	Reference channel Al 1/11 Sim	Scaling type_Scaling 10
	Al 1/L1 Sim_RMS	addition mode	Scaling Sensitivity
	V DEWE3-RM4	Window size _1 (4) _s (5)	Scaling Sensitivity
	> SYSTEM	Window overlap 0 6 %	Unit _ V
	V TRION3-1810M-POWER-4	Sample rate 1 7 Hz	Scaling _ 1 V/V,
	Al 1/11 Sim	Calculation type Reset on measurement start	Offset 0 V. Zero
	Al 1/12 Sim A 1/2 TRON-POINTR-SUB-AU-1	8	
	Al 1/D Sim		
	Al 1/14 Sim Al 3/4 TRON-POINTR-SUB-AU-1	PREVIEW	
	Al 1/U1 Sim A 2/U1 TEONS MID: POWER4	2	5.6569 V MAX
	Al 1/U2 Sim ALU2 TRONS MON POWER4		(9) S.6500 V AC RHS
	Al 1/U3 Sim N2U3 TRONS MON-POWER4		6.0000 V
	Al 1/U4 Sim A 1/U4 TRONS MON POWER4		AVG 5.6569 V
	V TRION3-1850-MULTI-4-D	Σ	MIN
	Al 3/1 Sim		5.6569 V
	Al 3/2 Sim H 32 TEONS-385-4927-40		
	N 3/3 Sim N 3/3 TEONS 485-MUCT-40 ● ●		
	Al 3/4 Sim	0 10	462+ 5.6569 V
	> CNT 3/1 Sim ©		X

Fig. 7.79: Statistics Channel Setup Overview

Table 7.16	: Push	buttons	in	the	Statistics	Channel	Setup	_
Overview								

No.	Function	Description
1	Active button	Setting a channel active or inactive; An active channel can be displayed in an instrument, used in a math channel and can be recorded, an inactive channel not.
2	Channel Name	Individual channel name; Can be changed individually.
3	Statistics Mode Setup	Select the statistical value that shall be calculated.
4	Window Size	Type in the desired window size (will affect the Sample Rate 6).
5	Window Size Unit	Select the unit of the window size. Select between seconds (<i>s</i>), minutes (m), hours (<i>h</i>) and days (<i>d</i>) (will affect the Sample Rate $\textcircled{6}$).
6	Window overlap	Choose a window overlap between 0 and 99 %.
7	Sample Rate	Sample rate that is calculated from the Window size in Hz (Window Size can also be changed via Sample Rate changes).
8	Calculation type	Select if the calculation should be carried on continuously, if the calculation should be reset on measurement start or if an overall value (single value) over the recording duration should be calculated.
9	Preview window	Real Time preview of the calculation.
10	Scaling menu	Change the channels' scaling by entering a Scaling factor or changing the sensitivity (and/or entering an offset) or by a 2-point scaling.

The following figure shows the mechanism for the statistics calculations and how the calculation window is moved.

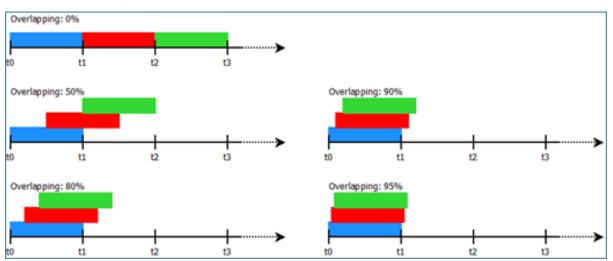


Fig. 7.80: Overlapping mechanism for the statistic calculations

Selectable statistical parameters

i = 1...N

- N = Sample Rate of Input Channel * Window Size
 - AVG: Calculates the linear mean value for the selected Window size according to the following formula:

$$\mathsf{AVG} = rac{1}{N}\sum_{i=1}^{N}\mathsf{Signal}\;\mathsf{level}_i$$

• MAX: Calculates the maximum signal level appearing in the individual time window

$$MAX = MAX \{Signal \ level_i\}$$

• MIN: Calculates the minimum signal level appearing in the individual time window

$$\mathsf{MIN} = \mathsf{MIN} \{ \mathsf{Signal} \; \mathsf{level}_i \}$$

• RMS: Calculates the quadratic mean value (RMS) for the selected window size according to the following formula

$$\mathrm{RMS} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(\mathrm{Signal}\ \mathrm{leve} l_i\right)^2} = \sqrt{\mathrm{AVG}^2 + \mathrm{ACRM}S^2}$$

• ACRMS: Calculates the quadratic mean value which is revised from DC components. This value is identical to the standard deviation calculated according to the following formula

$$\text{ACRMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\text{Signal level}_i - \text{AVG})^2}$$

• Peak-Peak: Calculates the peak-peak value for the selected window size by following formula:

Peak - Peak = 2 * RMS *
$$\sqrt{2}$$

• SUM: calculates the sum of the signal level within the window size by following formula

$$\mathsf{SUM} = \sum_{i=1}^N \mathsf{Signal} \; \mathsf{level}_i$$

- MIN Time: Determines the time, where the minimum of the signal was reached.
- MAX Time: Determines the time, where the maximum of the signal was reached.
- COUNT: Counts the number of samples within a calculation window.
- Variance: Calculates the variance, which is calculated by the squared ACRMS value by following formula:

$$\text{Variance} = \frac{1}{N} \sum_{i=1}^{N} \left(\text{Signal level}_i - AVG \right)^2$$

• CV: Calculates the coefficient of variation by following formula

$$\mathsf{CV} = \frac{ACRMS}{AVG}$$

• Peak: Calculates the peak value by following formula

$$Peak = MAX - AVG$$

• Crest: Calculates the crest factor by following formula

$${\rm Crest\,factor} = \frac{MAX}{RMS}$$

Note: Difference between the RMS and the ACRMS value: The RMS and the ACRMS value of a signal without DC component is the same. Let's assume a sine wave with an amplitude of 1 and no DC offset:

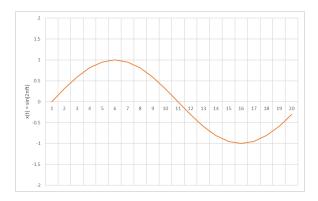
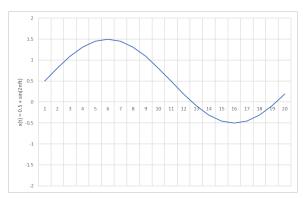



Fig. 7.81: Sine wave with amplitude 1, no DC component

In this case the RMS value is ~0.707 and the ACRMS value is ~0.707 as well.

If the signal has a DC component, the RMS value respects this DC component, but the ACRMS value does not respect the DC component:

For this signal, the RMS value is ~0.866, because the DC component is respected, but the ACRMS value is again ~0.707, because the DC component is not respected.

Using Array channels in Statistics

Besides time based synchronous and asynchronous channels it is also possible to assign array channels to Statistics calculations.

The calculation is created in the same manner as for time domain channels (see Fig. 7.83).

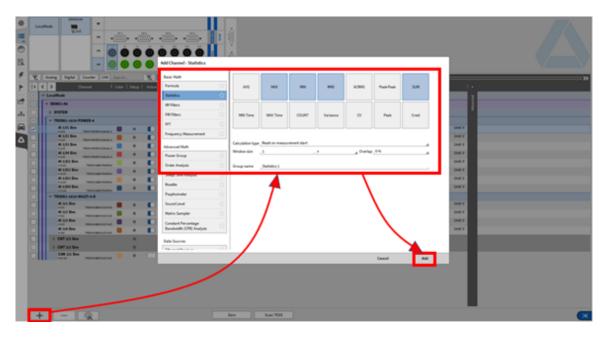
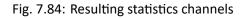



Fig. 7.83: Creation of statistics calculations with array channels

The resulting Statistics channel will be another array with same dimensions as the source channel. The update rate will be equal to the statistics window size (see Fig. 7.84).

Analog Digital Counter DN Search	A UN Secondation AV UN Sec. SUM			~ « »)
LocalNode	STATISTICS CHANNEL OPTIONS	WINDOW SETTINGS	SCALING	
 Statistics 1 	Reference channel At 1/IL Sim	Wedowste 1	Scaling type _ScalingA	
Al 1/1 Sim_SUM	Statistics-modeA	Window overlap _0 %	Scaling Smolthety	
A 1/1 Sim_ANG at 1 0	Calculation type Reset on measurement day't	Sample rate 1 Hz,		
A 1/1 Sim CHS			Unit V	
Al 1.51 Even MIN			Staling 1 UV	
AV 1/1 See, MAX			Offset _0 V, Zero	
A 1/1 Sim PP				
Al 1/1 Sim THIN				
Al 1.53 Sime THAX				
Al 1.13 Sim COUNT				
A 1/1 Sim_VMR 00 00 00 00 00 00 00 00 00 00 00 00 00				
A 131 Em PEAK				
A LITE Sectors Places	PREVEW			
+ UI be Tachina 0807. b	*T		OT HAE	
> SESTOR			-07	
V TRIONS SKID-POWER 4			ov	
A 1/1 Sim			-0V	
A 1/12 Sim +1/2 TRO+POND-118-62-1	Σ			
At 1/13 Sim				
A 1/21 Em				
ALLY TROUGHERSTONELS				
ALLIS TRONG ADD POMERA	1		47	

FFT channels

‡		TPIONot						
	TRIONet_	Add Channel - FFT						
		Basic Math	Data size	4096	Samples			
0		Formula	Window type	Hanning (-31dB)				
E		Statistics	Frequency weighting	Z (none)	<u></u>			
		FFT 🖒	Overlap	50	%_			
4		Filters	Amplitude spectrum	Amplitude	4			 >> Sca
		IIR Filters	Bin reduction					SCa
		FIR Filters	Group name	FFT Channels				
		Frequency Tracking		FFT Channels				
æ		Advanced Math					\mathbf{N}	
Δ^2		Cepstrum/Quefrency						
		Correlation						Scale: 1 Offset: 0
		Rosette						Scale: 1 Offset: 0
		Time Reference Curve 🛛 😭						Scale: 1 Offset: 0
		Percentile Measurement						Scale: 1 Offset: 0
		Histogram 😭						Scale: 1 Offset: 0
		Frequercy						Scale: 1 Offset: 0
		Measurement						Scale: 1 Offset: 0
						Cancel	Add	Scale: 1 Offset: 0
		× 011 1/1	Ψ.	_	_			
	+	- 🕸			Zero			? 🗮

Fig. 7.85: Pop-up window for creating an FFT channel

For creating a FFT channel, the user must select the channel and then click on the *Add* button in the lower left corner (marked red in Fig. 7.48) and select *FFT* in the appearing window (see Fig. 7.93). The user can select several input channels simultaneously to create several FFT channels with the same settings at once.

Note: FFT math can only be applied to synchronous channels, such as analog input channels or counter

channels but not to asynchronous channels, CAN channels, EPAD cannels, or power group channels.

Note: The difference between the FFT calculation using this math module or the Instrument Spectrum Analyzer is that the calculation using the math module is deterministic and the calculation using the Spectrum Analyzer is stochastic, i.e. the deterministic calculation can always be reproduced, because the exact instant of time each FFT spectrum is calculated is contained. This is not the case for stochastic calculation.

In addition, as the FFT calculation using the math module results in own FFT channels, the data can be exported to third party formats using the Export menu in the *PLAY* mode (for details, refer to *Export Settings*). This is not the case for the calculation using the Spectrum Analyzer.

Five channels may be created for each FFT calculation:

- The channel containing the complex spectrum Yk (called Channel_Name_Cpx). This channel cannot be visualized with an OXYGEN Instrument but is only useful for exporting it and using it for post-processing in a 3rd party software.
- 2. The channel containing the **amplitude spectrum** *Ak* (called *Channel_Name_Amp*) which is calculated according to the following formula:

$$\begin{split} A_k &= \frac{1}{N} \sqrt{\operatorname{Re}\left\{Y_k\right\}^2 + \operatorname{Im}\left\{Y_k\right\}^2} \;; \quad k = 0 \quad [\text{Signal unit}] \\ A_k &= \frac{2}{N} \sqrt{\operatorname{Re}\left\{Y_k\right\}^2 + \operatorname{Im}\left\{Y_k\right\}^2} \;; \quad k = 1 \dots N \quad [\text{Signal unit}] \end{split}$$

- This channel can be visualized within OXYGEN using the Spectrum Analyzer (see *Spectrum analyzer*) if the actual spectrum shall be plotted or it may also be assigned to the Spectrogram Instrument (see *Spectrogram*) if the time dependent spectral trend shall be displayed.
- 3. The channel containing the **phase spectrum** φk (called *Channel_Name_Phi*) which is calculated according to the following formula:

$$\varphi_k = \arctan \frac{Im\{Y_K\}}{Re\{Y_K\}}; \quad \ k = 0 \dots N \quad [\text{Signal unit}]$$

- This channel can be visualized within OXYGEN using the Spectrum Analyzer (see *Spectrum analyzer*) if the actual spectrum shall be plotted or it may also be assigned to the Spectrogram Instrument (see *Spectrogram*) if the time dependent spectral trend shall be displayed.
- This channel is not calculated automatically but must be selected manually in the Channel Setup of the complex spectrum Channel *Channel_Name_Cpx* after creating the FFT channel (see ⁽¹⁴⁾ in Fig. 7.87).
- 4. The channel containing the overall peaks of the amplitude spectrum
 - This channel is deactivated by default and holds the maximum of the amplitude values for each bin over the acquisition time.
- 5. The channel containing the **overall average** of the amplitude spectrum
 - This channel is deactivated by default and holds the average of the amplitude values for each bin over the acquisition time.

After selecting the FFT section, the user can define the following FFT characteristics:

- Data size: Select the number of samples to be transformed simultaneously into the frequency domain here. The data size may vary between 42 to 1048576 (2²⁰) samples. For calculation details, refer to *FFT properties for Time Domain Channels*.
- Window Type: Select an appropriate Window function here. The following windows are available: Hanning, Hamming, Rectangular, Blackman, Blackman-Harris, Flat Top or Bartlett. For calculation details, refer to *Window type*.
- Frequency weighting: If no frequency weighting is required, Z (none) is set as default. Additionally, A, B, C and D weighting are available.
- Overlap: Select an overlapping factor from 0 to 99.97559 % here. For calculation details, refer to *Additional information: calculation of a Periodogram*.
- Amplitude Spectrum: Select the type of amplitude spectrum the Amplitude channel shall contain. The following amplitude spectra are available: Amplitude, Amplitude_RMS, Amplitude², PSD, PSD TISA, PSD MSA, PSD SSA, Decibel (Ref:1), Decibel_RMS (Ref:1), Decibel_Max_Peak (Ref: Max), Decibel V-RMS, Decibel U-RMS, Sound Pressure Level or Sound Pressure Level (Water). For calculation details, refer to Section Spectrum.
 - If None is selected, no amplitude spectrum channel Channel_Name_Amp but only the complex spectrum channel is created.
- Group Name: Define a group in the Channel List to which the channel shall be added
- *Bin reduction:* Reduces the calculated FFT array for all FFT channels to a certain number of spectral lines in relation to the line resolution.
- After pressing the Add button, the FFT for the selected input channel(s) will be calculated and the Output channels will be visible within the *FFT Channels* topology in the Channel List (see Fig. 7.86).

•	LocalNode								
	✓ FFT Channels								
	Al 1/1_FFT_Cpx Al 1/1 FFT	Hann, 50%, 2.4Hz	¢				FFT/Complex	4.8 Hz	-100 V 100 V
	Al 1/1_FFT_Amp AI 1/1 FFT		¢		Vector 0.0022 0.002	2049 Elements 2 0.0001 0.0000 0.0	Amplitude	4.8 Hz	0 V100 V
	Al 1/1_FFT_Phi Al 1/1 FFT		\$		Vector 0.0000 -179.0	2049 Elements 841 36.7511 -143.9	Phase	4.8 Hz	-180°180°
	Al 1/1_FFT_Peak		\$		Vector 0.0022 0.002	2049 Elements 3 0.0001 0.0001 0.0			0 V 100 V
	AI 1/1_FFT_Avg		¢		Vector 0.0021 0.002	2049 Elements 1 0.0000 0.0000 0.0			0 V 100 V

Fig. 7.86: FFT channels within the channel list

Channel Setup of the Complex spectrum channel

After creating the FFT channel, the following options can be added afterwards within the Channels Setup of the complex Spectrum channel *Channel_Name_Cpx*:

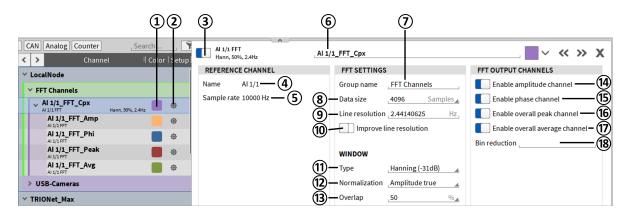


Fig. 7.87: Complex FFT channel setup - overview

No.	Function	Description
1	Channel color	Color scheme of the channel can be changed here.
2	Channel setup	Open channel settings window
3	<i>Active</i> toggle	Setting a channel active or inactive; An active chan- nel can be displayed in an instrument, used in a math channel and can be recorded, an inactive channel not
4	Name (of input channel)	The name of the input channel for the FFT calculation.
5	Sample rate (of input channel)	The sample rate of the input channel is displayed here.
6	Channel name	Individual channel name; can be changed individually.
7	Group name	FFT channels can be grouped. By default, all FFT chan- nels are put into the FFT Channels group. This can be changed at any time.
8	Data size	Select the number of samples to be transformed to the frequency domain here. The data size can be be- tween 42 to 1048576 (2^20) samples. This automati- cally results in a certain line resolution. For calculation details, refer to <i>FFT properties for Time Domain Chan-</i> <i>nels</i> .
9	<i>Line resolution</i> selection	Instead of selecting the number of samples, the line resolution in Hz can be entered, for which the data size is calculated. For calculation details, refer to <i>FFT</i> <i>properties for Time Domain Channels</i> .

Table 7.17: Complex FFT Channel Setup – Overview

continues on next page

No.	Function	Description				
10	Improve Line Resolution selection	 Enable Zero-Padding here. For calculation details, refer to Additional information: improve line resolution (Enable zero-padding). Select an appropriate Window function here. The following windows are available: Hanning, Hamming, Rectangular, Blackman, Blackman-Harris, Flat Top or Bartlett. For calculation details, refer to Window type. 				
11	Window Type selection					
12	Normalization Type selection	Select between <i>Amplitude True</i> , <i>Power True</i> or <i>No</i> nor- malization. For calculation details, refer to <i>Additional</i> <i>information: normalization of FFT Spectra</i> .				
13	Overlap selection	Select an overlapping factor from 0 to 99.97559% here. For calculation details, refer to <i>Markers</i> .				
14	Enable Amplitude channel selec- tion	Enable or disable the calculation of the amplitude channel here; enabled per default				
15	Enable Phase channel selection	Enable or disable the calculation of the phase channel here; disabled per default				
16	Enable Peak channel selection	Enable or disable the calculation of the total peak channel (see Fig. 7.87); disabled per default.				
17	Enable overall average selection	Enable or disable the calculation of the total overall average channel (see Fig. 7.87); disabled per default.				
18	Bin reduction	Reduces the FFT bins to the defined spectral lines, e.g. 1st, 2nd and 5th order in relation to the line resolu- tion.				

Table 7.17 - continued from previous page

Channel Setup of the Amplitude spectrum channel

After creating the FFT channel the following options can be added afterwards within the Channels Setup of the Amplitude Spectrum channel *Channel_Name_Amp*:

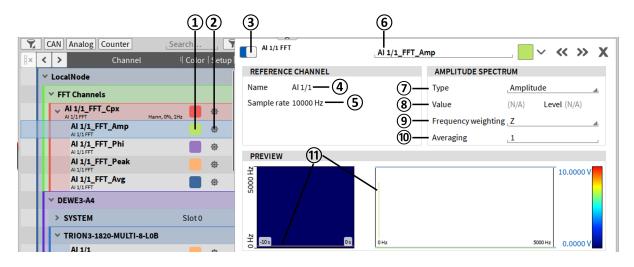


Fig. 7.88: Amplitude FFT channel setup - overview

No.	Function	Description		
1	Color	The color scheme of the channel can be changed here.		
2	Channel setup	Open channel settings window		
3	Active button	Setting a channel active or inactive; An active channel can be displayed in an instrument, used in a machannel and can be recorded, an inactive channel or		
4	Name (of input channel)	The name of the input channel for the FFT calculation.		
5	Sample rate (of input channel)	Sample rate of the input channel is displayed here.		
6	Channel name	Individual channel name; Can be changed individually.		
7	Spectrum type selection	Change the type of the amplitude spectrum here. For calculation details and spectra to be selected, refer to <i>Section Spectrum</i> .		
8	Value selection	If Decibel or Decibel RMS spectrum type is selected, the reference value can be entered here.		
9	Frequency weighting	Select if a frequency weighting should be applied to the amplitude spectrum A, B, C, D or Z (none) are available.		
10	Averaging selection	Average over 1 to 16 spectra.		
11	Preview window	Preview of the calculation in time (left) and frequency domain (right).		

Table 7.18: Amplitude FFT Channel Setup - Overview

Channel Setup of the Phase spectrum channel

After creating the FFT channel, the following options can be added afterwards within the Channels Setup of the Phase Spectrum channel *Channel_Name_Phi*:

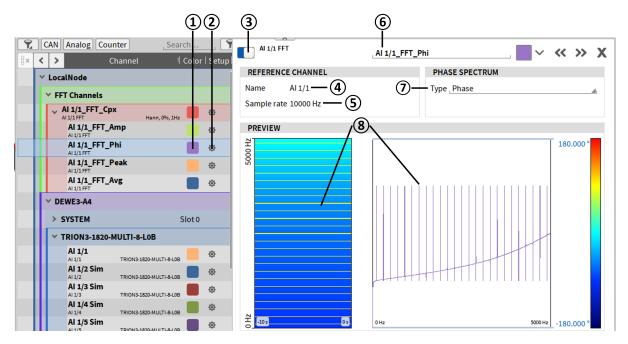


Fig. 7.89: Phase FFT channel setup - overview

		•			
No.	Function	Description			
1	Color	The color scheme of the channel can be changed here.			
2	Channel setup	Open channel settings window.			
3	Active button	Setting a channel active or inactive; An active channel can be displayed in an instrument, used in a marchannel and can be recorded, an inactive channel not			
4	Name (of input channel)	The name of the input channel for the FFT calculation.			
5	Sample rate (of input channel)	Sample Rate of the input channel is displayed here.			
6	Channel name	Individual channel name; can be changed individually			
7	Spectrum type selection	Change the type of the phase spectrum here. Avail- able types are Phase, Phase unwrapped, Phase (ra- diant) and Phase unwrapped (radiant). For calcula- tion details and spectra to be selected, refer to <i>Section</i> <i>Spectrum</i> .			
8	Preview window	Preview of the calculation in time (left) and frequency domain (right).			

	Table 7.19:	Phase FFT	⁻ Channel	Setup -	Overview
--	-------------	-----------	----------------------	---------	----------

Channel Setup of the overall Peak channel

After the FFT channels have been created, the following channel settings can be made for the Peak Channel:

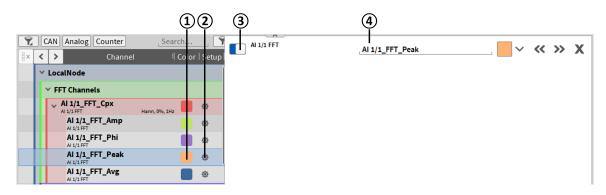


Fig. 7.90: Overall Peak channel settings

No.	Feature	Description		
1	Color	Color scheme for a channel can be change here.		
2	Channel setup	Open channel settings window.		
3	Active	Activate or deactivate a channel; an active channel can be displayed in a measuring instrument, used for a math channel and recorded, an inactive channel not.		
4	Channel name	Individual channel name; can be customized.		

Table 7.20: Overall Peak channel settings

Channel Setup of the overall average channel

After the FFT channels have been created, the following channel settings can be made for the overall average channel:

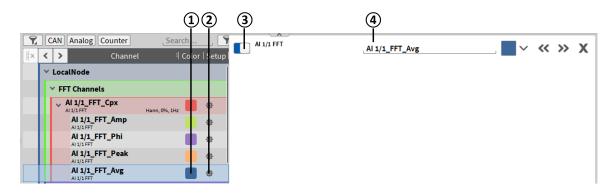


Fig. 7.91: Overall Average channel settings

The channel has the same amplitude scaling as the FFT_AMP channel and will be reset at measurement

start. The data will be continuously updated during recording, but only the last valid spectrum will be stored to *.dmd file, this means the data is stored as single value channel.

No.	Feature	Description
1	Color	Color scheme for a channel can be changed here.
2	Channel setup	Open channel settings window.
3	Active	Activate or deactivate a channel; an active channel can be displayed in a measuring instrument, used for a math channel and recorded, an inactive channel not.
4	Channel name	Individual channel name; can be customized.

Table 7.21: Overall Average channel settings

The following figure shows all three amplitude channel types: the amplitude channel, the total peak value, and the total average value of the amplitudes.

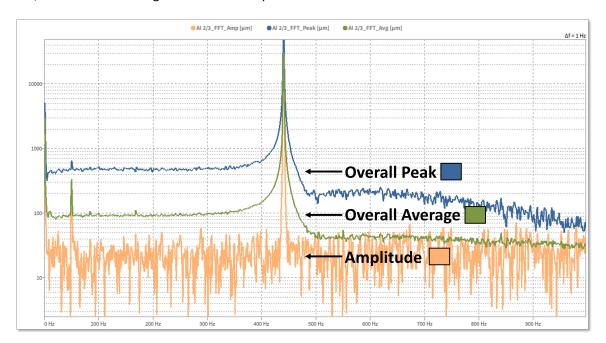


Fig. 7.92: Example of amplitudes, overall peak, and overall average in the spectral view

7.4.2 Filters

IIR Filter channel

Basic Math		Creates an IIR filter					
Formula	☆	Low pass	High pass	Band pass	Band stop	Differentiator	Integrator
Statistics	☆						
FFT	☆	Filter frequency	2500	Hz			
filters		Filter characteristic	Bessel	A Order 4			
IIR Filters	☆	Group name	Filters 1				
FIR Filters	☆	erequinitie					
Advanced Math							
Cepstrum/Quefrency	☆						
Correlation	☆						
Rosette							
Modal Test	☆						
Frequency Measurement	☆						
Constant Percentage Bandwidth (CPB) Analysis	☆						
Optional Calculations							
Power Group	☆						
Order Analysis	☆						

Fig. 7.93: Pop-up window for creating a (low or high pass) IIR filter channel

After clicking on the *Add* button, the *Calculation Setup* window will appear (see Fig. 7.93). For the creation of a Filter channel, the user must select the desired input channel before clicking on the *Add* button. The user can select several input channels simultaneously to create several filter channels with the same settings at once. After selecting the *Filters* section, the user can define the following filter characteristics:

• Filter Type: Low pass, High pass, Bandpass, Band-stop, Differentiator, Integrator

If Low pass or High pass filter is selected (see Fig. 7.93), the user can select

- Filter Frequency: from 0 Hz to $(\frac{\text{Samplerate}}{2} \frac{\text{Samplerate}}{200})$ Hz
- Filter Characteristic: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- Group name: Define a group in the Channel List to which the filter shall be added

If Bandpass or Bandstop filter is selected (see Fig. 7.93), the user can select

- Low Frequency: from 0 Hz to < Upper frequency Hz
- High Frequency: from (Lower frequency + 1) Hz to $(\frac{\text{Samplerate}}{2} \frac{\text{Samplerate}}{200})$ Hz
- Filter Characteristic: Bessel or Butterworth

- Filter Order: 2, 4, 6, 8, 10
- Group name: Define a group in the Channel List to which the filter shall be added

If Differentiator is selected, the user can select

O Low pass	High pass	• Differentiator	Integrator
Operation	d/dt		
✓ Filter high frequ	uencies		
Filter frequency	4950	Hz	
Filter characteristic	Bessel	🚽 Order _4	
Group name	Filters 1		

Fig. 7.94: Pop-up window for creating a Differentiator channel

• Operation: Single or double differentiation

If high frequencies shall be filtered

- Filter Frequency: from 0 Hz to $(\frac{\text{Samplerate}}{2} \frac{\text{Samplerate}}{200})$ Hz
- Filter Characteristic: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10
- Group name: Define a group in the Channel List to which the filter shall be added

If Integrator is selected, the user can select

C Low pass	High pass	Differentiator	Integrator
Operation	{ dt		
Filter low freque	-	A	
Filter frequency	5	Hz	
Filter characteristic	Bessel	🖌 Order 🛛 4	
Group name	Filters 1		

Fig. 7.95: Pop-up window for creating an Integrator channel

• Operation: Single or double integration

If low frequencies shall be filtered

- Filter Frequency: from 0 Hz to $(\frac{\text{Samplerate}}{2} \frac{\text{Samplerate}}{200})$ Hz
- Filter Characteristic: Bessel or Butterworth
- Filter Order: 2, 4, 6, 8, 10

• Group name: Define a group in the Channel List to which the filter shall be added

Note: Filters can only be applied to synchronous channels, such as analog input channels or counter channels but not to asynchronous channels, such as CAN channels, EPAD cannels, or power group channels.

• After pressing enter, the channel will appear in the *Data Channels* menu. The defined channel parameters can be changed afterwards in the Channel Setup (see Fig. 7.96).

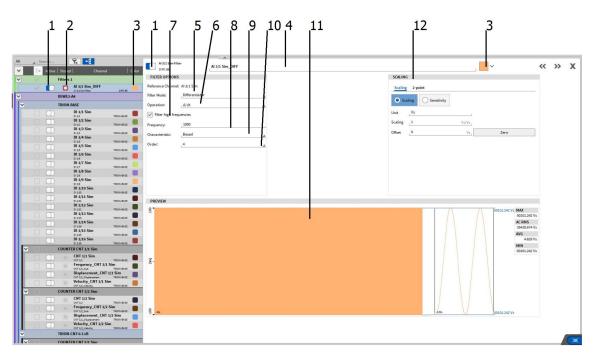


Fig. 7.96: Filter channel setup - overview

No.	Function	Description			
1	Active button	Setting a channel active or inactive; An active chan- nel can be displayed in an instrument, used in a math channel and can be recorded, an inactive channel not			
2	Stored button	Select whether channel data shall be stored or not when measurement is running			
3	Color	Color scheme of the channel can be changed here			
4	Channel Name	Individual channel name; Can be changed individually			
5	Filter Mode Setup	Select the filter type: Lowpass, High pass, Differentia tor, Integrator			
6	Operation Setup	Select the Operation type <i>Single</i> or <i>Double</i> Integration/ Differentiation (only applicable for Differentiators and Integrators)			
7	 Integrator: Select if low fre Differentiator: Select if high Lowpass/Highpass: not applied 	•			
8	Frequency Selection	Specify the cut-off frequency from 0 to Hz			
9	Filter Characteristic Selection	Select between Bessel and Butterworth filter charac- teristic			
10	Filter Order selection	Select a 2 nd , 4 th , 6 th , 8 th or 10 th filter order			
11	Preview window	Real Time preview of the calculation			
12	Scaling menu	Change the channels' scaling by entering a Scaling fac- tor or changing the sensitivity (and/or entering an off- set) or by a 2-point scaling			

Table 7.22: Push buttons in the Filter Channel Setup – Overview

FIR Filter channel

Basic Math		Creates a multi-	stage FIR filter			
Formula	☆	Low pass	High pass	Band pass	Band stop	
Statistics	☆			<u> </u>		
FFT	☆	Filter frequency	2500	Hz		
Filters		Window	Kaiser	A Filter length	31	
IIR Filters	☆	Group name	FIR Filter Channels			
FIR Filters	☆					
Advanced Math						
Cepstrum/Quefrency	☆					
Correlation	☆					
Rosette	☆					
Modal Test	☆					
Frequency Measurement	☆					
Constant Percentage Bandwidth (CPB) Analysis	☆					
Optional Calculations						
Power Group	☆					
Order Analysis	☆					

Fig. 7.97: Pop-up window for creating an FIR (high or low pass) filter channel

To create a filter channel, select a channel, click the *Add button* in the lower left corner (marked red in Fig. 7.93) and select FIR Filter. Multiple channels can be selected at the same time to create multiple filter channels with the same settings.

After FIR Filter is pressed, the following filter characteristics can be selected:

• Filter type: low pass, high pass, band pass, band stop.

If low-pass or high-pass filter is selected, the following can also be set:

- Filter frequency: from 0 Hz to $(\frac{\text{Sample rate}}{2} \frac{\text{Sample rate}}{200})$ Hz, Default (0.25 * Sample rate)
- Window mode: Kaiser, Rectangular, Hann, Hamming, Blackman, Blackmann/Harris, Flat Top, Bartlett, Cosine
- Filter length: between 8 and 32768
- Group name: define a group name in the channel list to which the filter should be added

Add Channel - FIR Filters								
Basic Math		Creates a multi-	stage FIR filter					
Formula	- 12	O Low perm	High pass	Band para	Band stop			
Statistics	ŵ							
IFT		Low frequency	1875	Hz_ High frequency	3125	Ha		
Filters		Window	Kalser	A Filter length	м			
IR Filters	Ŷ	Group name	FIR Filter Channels					
FIR Filters	ŵ							
Advanced Math								
Cepstrum/Quefrency	127							
Correlation	- 12							
Rosette	\$							
Modal Test								
Frequency Measurement	☆							
Constant Percentage Bandwidth (CPB) Analysis	ŝ							
Optional Calculations								
Power Group	1							
Order Analysis	<u></u>							
						Gano	d	Add

Fig. 7.98: Bandpass and Bandstop

When Bandpass or Bandstop is selected:

- Lower frequency: from 0 Hz to < Upper frequency Hz
- Upper frequency: from (Lower Frequency + 1) Hz bis $(\frac{\text{Sample rate}}{2} \frac{\text{Sample rate}}{200})$ Hz
- Window mode: Kaiser, Rectangular, Hann, Hamming, Blackman, Blackmann/Harris, Flat Top, Bartlett, Cosine
- Filter length: between 8 and 32768 (default = 31)
- Group name: define a group name in the channel list to which the filter should be added

Note: Filters can be applied only to synchronous channels, like analog input channels or counter channels, but not to asynchronous channels, like CAN channels, EPAD channels or power group channels.

Pressing Enter creates the filter channels in the channel list. The defined channel parameters can also be changed afterwards in the channel settings.

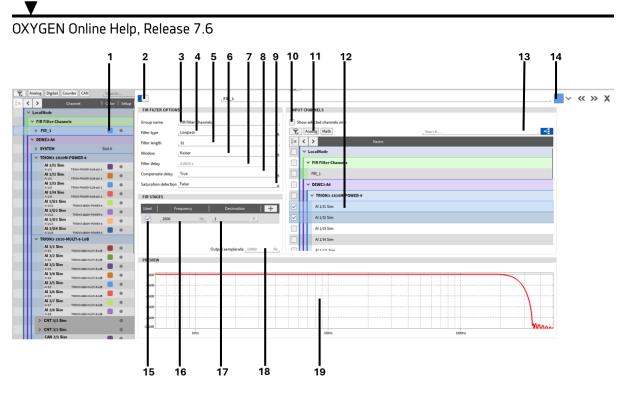


Fig. 7.99: FIR settings

Table	7.23:	FIR	settings
TUDIC	1.23.	1 11 1	Jettings

Nr.	Feature	Description
1	Color	Color scheme for a channel can be changed here.
2	Activate	Activating or deactivating a channel; an active channel can be displayed in a measuring in- strument, be used for a math channel and be recorded, an inactive channel cannot.
3	Group name	Define the name of the channel group within the OXYGEN channel list
4	Filter type	Select the filter type: Lowpass, Highpass, Bandpass, Bandstop
5	Filter length	Between 8 and 32768
6	Window	Kaiser, Rectangular, Hann, Hamming, Black- man, Blackman/Harris, Flat Top, Bartlett, Co- sine
7	Filter delay	Delay depending on filter length (see point 4)
8	Compensate delay	Automatically compensate filter delay Yes = TRUE, No = FALSE

continues on next page

_

OXYGEN Online Help, Release 7.6

Nr.	Feature	Description
9	Saturation detection	Activate or deactivate saturation detection. If the detection is activated and the input chan- nel is in saturation or exceeds the measur- ing range, the calculated FIR channel returns "NAN" as value as long as the input channel is in saturation. For illustration see Fig. 7.100.
10	Selected channels	When activated, only analog channels that have already been selected as FIR filter channel are displayed.
11	Analog channels	When activated, only analog channels are displayed in the list
12	Channel list	List of available input channels according to the selection in 9 / 10 / 12
13	Search filter	Only channels that match the search input are listed.
14	Color	Color scheme for a channel can be changed here.
15	FIR stages	Selection which FIR stages should be used, it is possible to specify several stages and to activate or deactivate them afterwards.
16	Frequency selection	Define the cutoff frequency from 0 to (sample rate/2 - sample rate/200)
17	Decimation factor	Reduces the sampling frequency by the speci- fied factor (only for low-pass filter). If a signal is recorded with e.g. 10 kHz and you specify a decimation factor of 5, you get a filtered sig- nal with a sampling frequency of 2 kHz. Thus, the sample points between the sample points of the filtered signal are skipped.
18	Output sample rate	Shows the actual outputsamplerate of the FIR channels, according to the selected decimation steps.
19	Preview	Filter behavior in the preview area

Table 7.23 – continued from previous page

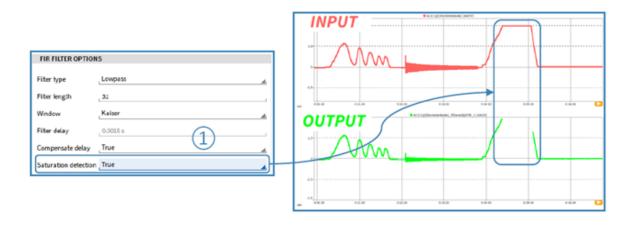


Fig. 7.100: FIR – Saturation detection

Choice of filter length:

A shorter filter length has fast execution times and therefore shorter delay times; however, choosing very short filter lengths results in a flat attenuation drop. The attenuation drop is displayed in the preview window when the filter lengths are changed.

The filter length can be defined with the following formula.

 $Filterlength = 2*\frac{\text{Sample rate}}{\text{Cutoff frequency}}$

High attenuations in the stopband or low ripples in the passband may require a higher filter length. In the case of a low pass filter it makes sense to define several filter stages if the calculated filter length is too high. This happens, for example, if for a signal with a sampling frequency of 200 kHz, you are only interested in frequencies below 100 Hz. As a result, the individual filter stages are performed with lower filter lengths, which results in a reduction of the computational load.

Frequency tracking

In the filter options, you can create a bandpass filter with variable center frequency.

₩ 1	Lo	calNode	Add Channel - Frequency	Tracking	٦
 Image: Second second			Basic Math Formula Statistics FFT Filters IIR Filters FIR Filters		
		CAN Analog	Frequency Tracking		
0	₿x	< >	Advanced Math		
۵		✓ LocalNode	Cepstrum/Quefrency		
		Y DEWE3-R	Correlation		
		SYSTEM	Rosette		
		✓ TRION3	Time Reference Curve		
		Al 1/1 Al 1/1	Percentile Measurement		
		Al 1/2 Al 1/2	Histogram		10.01
		AI 1/3 AI 1/3 AI 1/4 AI 1/4 AI 1/4	Frequency Measurement		
		AI 1/5		Cancel Add	a a
		Al 1/6 Al 1/6	TRION3-1820-MULTI-8-LOB		se
	-	+ -		Zero Scan TEDS Disable TEDS	

Fig. 7.101: Creating a frequency tracking filter

If channels were selected before creating the filter, the first selected channel is assigned as the reference channel, and all subsequent channels are assigned as input channels.

2][CAN Analog (Counter Search			FrequencyTracking	✓ « » x
8×	<	>	Channel 티 이 이 Color	Setup		Frequency fracking	
	~	LocalNode			PROPERTIES		
	ŀ	• FREQUENCY	TRACKING Channels		Input Channels Reference Speed Channel	_AI 1/1 1 J. Speed_CNT 0/1 2	, III
		Frequency	Tracking	\$	Fixed Bandwidth	3 3	Hz,
		AI 1/1_TF	-E1 📕	٥	Filter Type	Bessel	A
		AI 1/1_TF	-E2 📕	٥	Order	10th 5 1;2;3;5.5 6	
	I	AI 1/1_TF	-E3 📕	٥	Extracted Order Status	;2;3;5.5 (b) , ОК (7)	
		AI 1/1_TF	-E5.5	٥			
	1	V DEWE3-RM16	5				
		> SYSTEM	Slot 0				
		Y TRION3-18	20-MULTI-8-L0B				
		Al 1/1 Al 1/1	TRION3-1820-MULTI-8-LOB	٥			
		AI 1/2	_	~			() 📃

Fig. 7.102: Channel settings of the frequency tracking

Nr.	Func- tion	Description
1	Input chan- nels	One output channel per extracted order is created for the assigned input channels
2	Refer- ence speed chan- nel	The reference channel determines the center frequency of the bandpass filter. This can be specified in rpm or Hz. If there is a unit error, this is displayed in the status line ⑦.
3	Fixed band- width	The fixed bandwidth determines the frequency above and below the reference fre- quency at which the input signals are attenuated by 3 dB. Meaning for a fixed band- width of 3 Hz, the damping of frequencies which are 3 Hz above the reference fre- quency is -3 dB.
4	Filter type	Select the filter function, either Bessel or Butterworth.
5	Order	Determines the power of the filter function from 2nd to 10th order.
6	Ex- tracted order	Determines the ratio to the reference frequency for which the bandpass filter is to be applied. Non-integer values are also possible.
7	Status	Potential errors in the channel units or sampling rates are displayed here.

Table 7.24: Tracking filter channel settings

7.4.3 Advanced math

Cepstrum/Quefrency

Cepstrum is a signal processing algorithm introduced in the 1960s for audio and acoustic analysis. Originally, Cepstrum was used to separate excitation parameters from sound-affecting parameters.

Examples:

- Speech: Excitation of the vocal cord and impairment of the oral cavity.
- Stringed instruments: string excitation and body resonance

Cepstral analysis is nowadays also used for vibration analysis and can be used, for example, to characterize seismic echoes, such as those from earthquakes and bomb blasts. It is a non-linear Fourier method which is used to "deconvolve" two signals.

In general, Cepstrum analysis is performed in the following way (see Fig. 7.103):

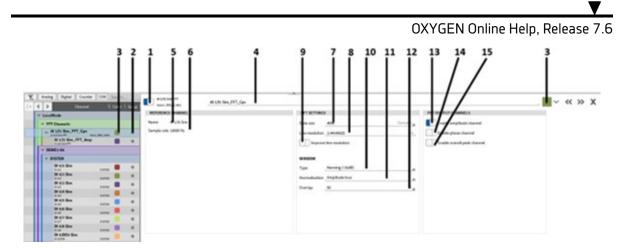


Fig. 7.103: Cepstrum analysis

The term "Cepstrum" is an artificial word, which is created from the word "Spectrum" by swapping the first four letters. In the same way "Frequency" becomes "Quefrency" and "Filtering" becomes "Liftering". (see Fig. 7.103):

The algorithm is defined as follows. When measuring an acoustic signal, the signal is transformed into the frequency domain by means of FFT, then the natural logarithm of the spectrum is formed and finally transformed back into the time domain by means of an inverse FFT. The result of this algorithm is the cepstrum.

Use in OXYGEN

Clicking on "+" in the channel list opens the window for selecting the various math functions. Under the basic math functions there is the option to add a cepstrum/quefrency analysis. (see Fig. 7.104) It is possible to choose among 3 different cepstral analyses. You can choose between "Amplitude", "Power" and "Complex". Furthermore it is possible to activate a filtering (liftering) and to define a group name in which the new channels will be added to the channel list. (for more information on the functions, see Fig. 7.103) By clicking on the "Add" button in the lower right corner of the window, the created channels are automatically created to the defined group name.

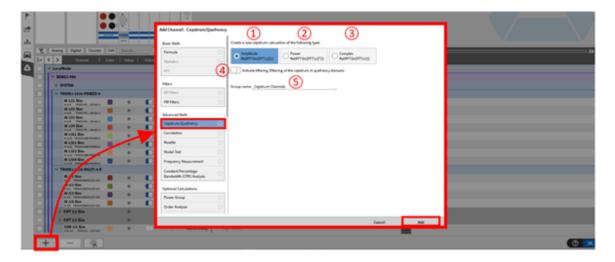


Fig. 7.104: Adding Cepstrum/Quefrency

Nr.	Function	Description
1	Amplitude	The amplitude cepstrum or real cepstrum is defined as follows: $Re \{IFFT (ln (FFT(x)))\}$ It takes a time signal and proceed block by block as follows: - FFT calculation - Formation of the absolute value - Non-linearization with the logarithm naturalis (ln) - Inverse Fourier Transformation - Extraction of the real part
2	Power	In Power Cepstrum, the absolute value is squared before it is logarithmized. The calculation is: $Re\left\{IFFT\left(ln\left(FFT\left(x\right) ^{2}\right)\right)\right\}$
3	Complex	With the complex spectrum, not the magnitude of the FFT, but the complex spectrum is logarithmized. Thus, the phase info is preserved during the reverse transformation. The calculation is: $Re \{IFFT (ln (FFT (x)))\}$
4	Liftering	When activated, the filtering is activated and can then be adjusted in the settings of the cre- ated channel.
5	Groupname	Defines the group name in which the gen- erated channels of the cepstral analysis are listed.

T T A F	c c			
Table 7.25:	Setting for (creating a	cepstral	analysis

After clicking on "Add", a new Cepstrum group is added under the specified group name. By opening the properties of the newly created group, further settings for the cepstral analysis can be made (see Fig. 7.105). In addition to the "Liftering channels", 3 further channels are automatically created and are thus available to you.

- Cepstrum: This is the continuous Cepstrum
- Overall: The total Ceptrsum averaged from the start of measurement to the end of measurement.
- Spectrum: The logarithmized signal in the frequency domain

							1.4.7							
Analog Bigliel Counter CHI				Ceput	un,1							$\sim \ll$	>> 7	
V Localitade	- 1944	OPTIONS				PUT ON	MANNELS							
V Expetrum Dannels	* Experiment Descerits					Show selected channels only								
v Cepstrum_1 📒	V Gegeleum, 1 🛛 🛛 Window begin 1004				٩,	16	halog	Jane	h					
× Al 1/0 Sim		Window overlap	.90	÷.,	(1×	<	> Name							
H 1/1 S Cepstrum					~ 1	LocalNode								
N 1.11 Sim Overall	•	Lifeing	True		۲	15	DEWEX-Ma							
N Lift Sim Spectrum Ingligation N Lift Sme Lifter	•	UReing Evenhold				iir	V TRIOKS LIGH-POWER-4							
R 101 S. igh Lifter					믕	Ħ	A L/L See							
William Spectrum			•		H	ш	~							
Al 101 S., Spectrum			- 1		1	ш	A105m (7)							
V DENED-PM			- 1		-	ш								
> SYSTEM					ш	ш	At 1/94 Sim							
V TROND LIDO POWER 4	V TROMU LICO POWER 4					ш	Af LVI Sm							
N L/1 See	•					ш	ALL/UP Sim		_					
N LID Sim						Ш	Al 1/Ut Sim	OPTIONS						
A LO Sin auto Tech-Abert Lingut A LM Sin	•					ш	Al L/UK Sim			0				
A LA TROUMDER AND L				۱.		Ш	< 10000 100+0000 +0	Mode	Amplitude	1				
A 1/V3 Sim				<u>۱</u>		111	A ki Sm			~				
W LND Sim				\		ш	Al 1/2 See	Window length	1024	2				
A 1/04 Sim					-						-4		۲	
					`	_		Window overlap	.50	(3)	96 .		_	
										ž				
								Window type	Hamming (-42dB)	4				
								Liftering	True	5				
										6	_			

Fig. 7.105: Cepstrum settings

Nr.	Function	Description
1	Mode	The choices are: Amplitude, Power and Complex.
2	Window length	Select the number of samples to be simulta- neously transformed into the frequency do- main. The window width can vary between 32 and 262144 (2 ¹⁸) samples. For more de- tails on the calculation, see <i>Instruments and</i> <i>instrument properties</i> .
3	Window overlap	Select an overlap factor between 0 to 90 %. For more details, see <i>Additional information:</i> <i>calculation of a Periodogram</i> .
4	Window type	Choose a suitable window. The choices are: Hanning, Hamming, Rectangle, Blackman, Blackman-Harris, Flat Top or Bartlett. For more details of the calculation, see <i>Window type</i> .
5	Liftering	Here the liftering (filtering) can be activated or deactivated.
6	Liftering threshold	Here you can enter a limit value in samples. The cepstrum is thus divided into an upper (H) and lower (L) cepstrum. All cepstrum samples below the limit value (incl. limit value) are written into a new channel "Low-Lifter" Output channel Low-Lifter-Spectrum: Re{ FFT(L * Cep- strum) } - Output channel Low-Lifter: Re{ IFFT(exp(FFT(L * Cepstrum))) } All cepstrum samples above the thresh- old (excl threshold) are written to a new channel "High-Lifter" Output channel High-Lifter-Spectrum: Re{ FFT(H * Cep- strum) } - Output channel High-Lifter: Re{ IFFT(exp(FFT(H * Cepstrum))) } This applies to amplitudes and power cep- strum. For the complex cepstrum, the abso- lute value of the complex signal is always out- put instead of the real part.
7	Channel selection	Here you can select the channels for which a cepstral analysis has to be performed.

Table 7.26: Cepstrum settings

Auto/Cross-correlation

Clicking on "+" in the channel list opens the window for selecting the different math functions. Under the basic math functions there is the option to add a correlation (see Fig. 7.106). It is possible to choose between an Auto or a Cross-correlation. Then press the "Add" button in the bottom right corner of the window and a new correlation channel will automatically be added to the channel list under the specified group name (see (3) in Fig. 7.106).

The Auto-correlation

The Auto-correlation (see (1) in Fig. 7.106) mathematically describes the convolution of a signal with itself and is used to detect periodicity in signals, e.g. in modulated and noisy signals.

Formula Auto-correlation:

$$\varphi_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) * x(t+\tau) d\tau = IFFT \{FFT \{x\} * FFT \{x\}\}$$

The calculation is performed as follows:

Take a time signal and proceed block by block as follows:

- FFT calculation
- Multiplication of the spectrum with itself
- Inverse FFT
- Normalization to amplitude +/-1

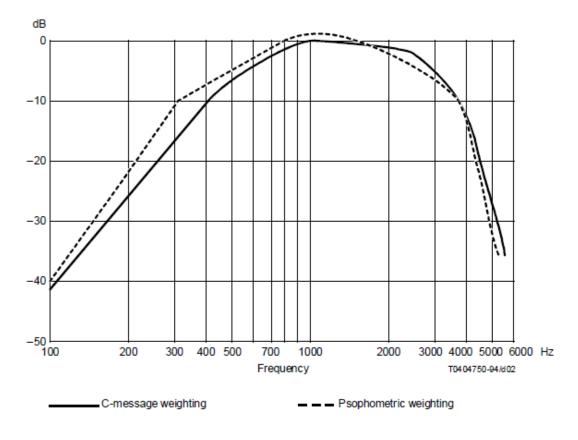


Fig. 7.106: Adding Auto and Cross-correlation

4.12	с . 	Date Date		_					a	~				. <mark>.</mark>	×
4	_	LocalWinder			OPTIONS		-	INP	T ONAMMELS						
-	15	Correlation Channels			Node	Advantation			ow selected channels o	unity					
		V Adocarrelation_1			Window length	1004		٩,	Analog Counter	6		Search			-4
		V ALL/D Sim			Window overlap	.90	1.4	(x	< >		Name				
- 11	ш	ALLS Sim Time Tracing at	•		Window lype	Namming (4048)		۲	∨ LocalNole						
- 18	40	W US		•	Symmetric Sime and	a True		۲	V DEWEX-RMs						
- 14	-11	DENES-RM							V 18083-1414	M POWER 4					
- 11	117	> SPISTEM V TEXONS USING POWER 4				· · ·			A1/2 See	6					
- 11	-11	W L/S Sim				· · · ·		n	ALUSIA	•					
- 11	ш	W LTD Sim							ALUSIA						
- 11	111	W LOD Son					<u>۱</u>	i i i	ALVIER						
		AV 1.14 Sim					Λ.	10							
- 11		W LIVE Sime						i i i	ALL ULSER	_	OPTIONS				
- 11	ш	Al 1/93 San a traditional descention of the second		•				N	ALL/US See						
	-111	W LOOP State		*					A11/055m		Mode	Autocorrelation	1		
- 14	-111	TROAD USIN MUCT 4-D		•					A1/UKSm						
- 11	-111	AT 123 Kim							~ 1000-100	W021+0	Window length	1024	2		
- 11		A 10 Text and a 14	÷.						ANISm						
- 11	ш	A 10 Sin							AL125m		Window overlap	50	3 %	_	_
		At 1/4 Size					_			_	window over ap	30	3 %	0	ж
											Window type	Hamming (-42dB)	4		
											Symmetric time axis	True	5 🖌		

Settings of the Auto-correlation

Fig. 7.107: Auto-correlation – settings

Nr.	Function	Description
1	Mode	The choices are: Auto-correlation and Cross-correlation. Here you can also switch between both calculations afterwards.
2	Window length	Select the number of samples to be simultaneously transformed into the frequency domain. The window width can vary between 32 and 262144 (2 ¹⁸) samples. For more details of the calculation, see <i>Instruments and instrument properties</i> .
3	Window overlap	Select an overlap factor between 0 to 90 %. For more details, see <i>Additional information:</i> <i>calculation of a Periodogram</i> .
4	Window type	Choose a suitable window. The choices are: Hanning, Hamming, Rectangle, Black- man, Blackman-Harris, Flat Top or Bartlett. For more details of the calculation, see <i>Win- dow type</i> .
5	Symmetric time axis	Visualization of the autocorrelation either from -t/2 +t/2 (True) or 0 t (False).
6	Channel selection	Here you can select the channels for which an Auto-correlation is to be performed.

Generated channels of the Auto-correlation

When you perform an autocorrelation, OXYGEN will automatically create 2 channels for you:

• Time - The result of the autocorrelation in the time domain.

$$IFFT \{FFT \{x\} * FFT \{x\}\}$$

• Frequency - The result of multiplying signal x by itself in the frequency domain

$$FFT \{x\} * FFT \{x\}$$

	∨ Co	orrelation Channels						
	~	Autocorrelation_1	۲			Autocorrelation		
	~	/ Al 1/1@CE240258						
		Al 1/1@CE240258 Time Time Signal	۲		Vector 1024 Elements 0.4696 0.4696 0.4696 0.4696 0.4697 0.4697 0.4697 0.4698 (10 kHz	-11
		Al 1/1@CE240258 Frequency Frequency Signal	۲		Vector 513 Elements 0.7338 0.2642 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 (10 kHz	01

Fig. 7.108: Auto-correlation generated channels

The Cross-correlation

V

The Cross-correlation (see 2 in Fig. 7.106) mathematically describes the convolution of a signal x with another signal y. The Cross-correlation is used e.g. to detect identical components in 2 different signals or to analyze the delay time between 2 signals.

Formula Cross-correlation:

$$\varphi_{xy}\left(\tau\right) = \int_{-\infty}^{+\infty} x(t) * y(t+\tau)d\tau = IFFT\left\{FFT\left\{x\right\} * FFT\left\{y\right\}\right\}$$

The calculation is performed as follows:

Take a time signal and proceed block by block as follows:

- FFT calculation
- Multiplication of the spectrum of signal x with the spectrum of signal y
- Inverse FFT
- Normalization to amplitude +/-1

Settings of the Cross-correlation

	V Correlation Channels						
	 Autocorrelation_1 	۲	0		Autocorrelation		
	✓ AI 1/1@CE240258						
	Al 1/1@CE240258 Time Time Signal	۲	٥	Vector 1024 Elements 0.4696 0.4696 0.4696 0.4697 0.4697 0.4697 0.4698 (10 kHz	-11
	Al 1/1@CE240258 Frequency Frequency Signal	۲	0	Vector 513 Elements 0.7338 0.2642 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 (10 kHz	01

Fig. 7.109: Cross-correlation - settings

Nr.	Function	Description
1	Mode	The choices are: Auto-correlation and Cross-correlation. Here you can also switch between both calculations afterwards.
2	Reference channel	Select a reference channel for the calculation of the Cross-correlation. To do this, drag and drop the desired reference channel from the channel list (7) into the field for the reference channel (2).
3	Window length	Select the number of samples to be simultaneously transformed into the frequency domain. The window width can vary between 32 and 262144 (2 ¹⁸) samples. For more details, see <i>Instruments and instrument properties</i> .
4	Window overlap	Select an overlap factor between 0 to 90%. For more details, see Additional information: calculation of a Periodogram.
5	Window type	Choose a suitable window. The choices are: Hanning, Hamming, Rectangle, Black- man, Blackman-Harris, Flat Top or Bartlett. For more details of the calculation, see <i>Win- dow type</i> .
6	Symmetric time axis	Visualization of the autocorrelation either from -t/2 +t/2 (True) or 0 t (False).
7	Channel selection	Here you can select the channels for which a Cross-correlation is to be performed, referring to the selected reference channel $\textcircled{2}$.

Table 7.28: Cross-correlation – settings

Generated channels of the Cross-correlation

When you perform a cross-correlation, OXYGEN will automatically create 3 channels for you:

• Time - The result of the cross-correlation in the time domain.

$$IFFT \{FFT \{x\} * FFT \{y\}\}$$

• Frequency - The result of the multiplication of signal x and signal y in the frequency domain

$$FFT \{x\} * FFT \{y\}$$

Coherence

$$y^{2} = \frac{|Powerspectrum_{xy}|^{2}}{Powerspectrum_{x} * Powerspectrum_{y}}$$

The coherence is an indicator to see if the reference signal x and the signal y match. The more identical the two signals are, the closer the value is to 1. If the signals are exactly identical, the coherence would return "1" as a result.

OXYGEN Online Help, Release 7.6

I	~	Cross-correlation_1	¢			Cross-correlation	
н		V Al 1/2@CE240258					
П		Al 1/1@CE240E240258 Time	÷	٥	Vector 1024 Elements -0.4774 -0.4771 -0.4767 -0.4764 -0.4763 -0.4762 -0.4760 -0	10 kHz	-11
Ш		Al 1/1@CE2402258 Frequency Frequency Signal		٥	Vector 513 Elements 0.7306 0.2582 0.0003 0.0007 0.0001 0.0001 0.0002 0.0001 (10 kHz	01
		Al 1/1@CE2402258 Coherence Coherence Signal	*	٥	Vector 513 Elements 0.1785 0.0478 0.0396 0.0551 0.0320 0.0591 0.0041 0.0505 (10 kHz	01

Fig. 7.110: Cross-correlation generated channels

Rosette (strain gauge) channels

Basic Math	Rosette type		Angle reference	
Formula	☆ ● 45' ○ 60°	90"	● A ○ B ○ C	
Statistics				
FFT	344	Young modulus	Strain unit	
Filters	.0.33	. 69		
IR Filters	Output channels			
FIR Filters	Max. Principal Strain			
Advanced Math	Angle			
Cepstrum/Quefrency	Average Strain			
Correlation	Max, Shear Strain			
Rosette	Max. Principal Stress			
Modal Test	Min. Principal Stress			
Frequency Measurement	Max. Shear Stress			
Constant Percentage Bandwidth (CPB) Analysis	Von Mises Stress			
Optional Calculations				
Power Group				
Order Analysis				

Fig. 7.111: Pop-up window for creating a Rosette calculation

For creating a Rosette channel, the user must click on the *Add* button in the lower left corner (marked red in Fig. 7.48) and a window will appear (see Fig. 7.111). To create a Rosette channel, select *Rosette*. After clicking on the OK button, a Rosette main channel (*Rosette_1* in Fig. 7.112) with its Sub channels (*Max Principal strain* to *VonMises Stress* in Fig. 7.112) is added to the channel List. A click on the gear button of the main rosette channel will open the Rosette settings to perform changes afterwards (see Fig. 7.112).

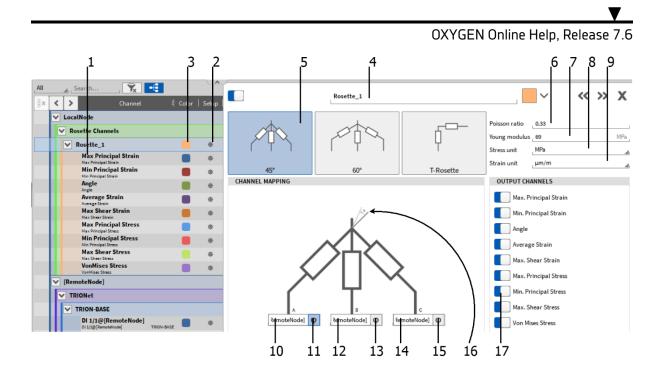


Fig. 7.112: Rosette channel setup – overview

No.	Function	Description
1	Channel List	Channel List including the output channels of the Rosette calculation.
2	Channel setup button	Opens the channel setup of the individual channel.
3	Color	Color scheme of the channel can be changed here.
4	Channel Name	Individual channel name; Can be changed individually.
5	<i>Rosette Type</i> selection	Select the rosette calculation type here: 45° , 60° , 90° (T).
6	Poisson ratio selection	Enter the poisson ration here.
7	Young modulus selection	Enter the Young modulus of the used material here.
8	Stress unit selection	Select the unit of the Young modulus here: [MPa], [GPa] or [kgf/mm ²].
9	Strain unit selection	Select the strain unit here: $[\mu m/m]$ or [microstrain].
10	Epsilon A channel assignment	Assign the input channel for <i>Epsilon A</i> here.
11	Reference Angle Selection	Select <i>Epsilon A</i> as Reference Angle here; If selected, the background will highlight grey-blue.
12	Epsilon B channel assignment	Assign the input channel for <i>Epsilon B</i> here.
13	<i>Reference Angle</i> Selection	Select <i>Epsilon B</i> as Reference Angle here; If selected, the background will highlight grey-blue.
14	Epsilon C channel assignment	Assign the input channel for <i>Epsilon C</i> here.

Table 7.29:	Rosette	channel	setup –	overview
-------------	---------	---------	---------	----------

continues on next page

No.	Function	Description
15	Reference Angle Selection	Select <i>Epsilon C</i> as Reference Angle here; If selected, the background will highlight grey-blue.
16	<i>Reference Angle</i> hint	Highlights the selected reference angle in the rosette schematics.
17	Output channel activation	Activate or deactivate the single channels that shall be calculated and output by the calculation.

Table	7.29 -	continued	from	previous page	
i abio	7.20	0011111000		providuo pugo	

Required input channels

The Plugin requires three strain gauge input channels (*Epsilon A, B, C*), the angular rosette alignment (45° , 60° , 90° (T)) and the angle reference (A, B, C). Available input channels for *Epsilon A*, B, C are analog input channels. The 90° or Tee type rosette requires only 2 input channels (*Epsilon A*, B).

The advantage of using three-channel rosettes is to minimize the effect of error due to misalignment to the elements from the physical axis. Furthermore, the bigger the angle between the gauges, the better the result concerning noise influence.

Note: Channels that are assigned to the Rosette plugin require the engineering unit $\mu m/m$ or um/m. Other engineering units are not accepted and will lead to the error message *Unit of input channels not* $\mu m/m$ or um/m in the Channel Setup of the main rosette channel (see Fig. 7.113).

Unit of input channels not $\mu m/m$ or um/m

Fig. 7.113: Error message in case of wrong engineering unit

The channel to be used for the rosette calculation can be selected before clicking on the Calculator button. If channels 1/1, 1/2 and 1/3 are selected one after the other and a three channel is selected, the channels will be assigned automatically in the following manner after clicking the *OK* button in the *Rosette Calculation Setup*: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C.

If channels 1/3, 1/1 and 1/2 are selected one after the other and a three channel is selected, the channels will be assigned automatically in the following manner after clicking the *OK* button in the *Rosette Calculation Setup*: 1/3 to Epsilon A, 1/1 to Epsilon B and 1/2 to Epsilon C

If six channels 1/1, 1/2, 1/3, 1/4, 1/5 and 1/6 are selected one after the other, two three-channel rosettes or three two-channel rosettes can be created with one click on the Calculator button. The input channels will be assigned in the following manner (example for two three-channel rosettes):

- Rosette 1: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C
- Rosette 2: 1/4 to Epsilon A, 1/5 to Epsilon B and 1/6 to Epsilon C

If four channels1/1, 1/2, 1/3, 1/4 are selected one after the other and two three-channel rosettes shall be created, the input channels will be assigned in the following manner:

- Rosette 1: 1/1 to Epsilon A, 1/2 to Epsilon B and 1/3 to Epsilon C
- Rosette 2: 1/4 to Epsilon A, Epsilon B and Epsilon C will remain unassigned

The channel assignment can be edited after creating the Rosette calculation in the Channel setup of the main channel (see (6) in Fig. 7.112) by dragging and dropping the desired channel from the Channel List on the left-hand side to the individual input channel of the rosette calculation (see Fig. 7.114).

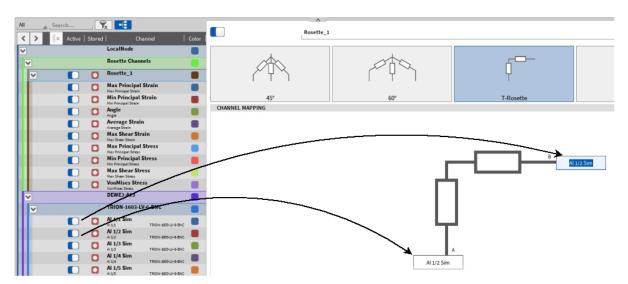


Fig. 7.114: Channel assignment in the rosette channel setup

If the assignment of a rosette input channel is missing, the error message *Input channels not ready* will be displayed at the bottom of the Channel Setup (see Fig. 7.115).

Input channels not ready

Fig. 7.115: Error message in case of missing channel assignment

The sample rate of the channels assigned to one rosette calculation must all be same . If they differ, the error message *Sample rates of input channels differ* will be displayed at the bottom of the Channel Setup (see Fig. 7.116).

Sample rates of input channels differ

Fig. 7.116: Error message in case of different channel sample rates

The sub channels (see 1 in Fig. 7.112) resulting from the rosette calculation have a Channel Setup that can be accessed via the Gear Button in the Channel List as well. But only the Channel scaling can be edited there.

Resulting output channels

The plugin uses the so-called Mohr's circle (see Mohr's circle) for the calculations. For details, refer to the relevant literature.

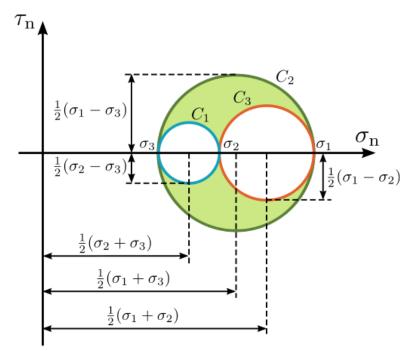


Fig. 7.117: Mohr's circle

The calculated values are represented in channels, which are shown below.

- Max Principle Strain \rightarrow Max. Strain in angle direction [μ m/m] or [microstrain]
- Min Principle Strain \rightarrow Min. Strain in angle +90° direction [μ m/m] or [microstrain]
- Angle \rightarrow Angle of max. strain [°]
- Average Strain \rightarrow Center of Mohr's circle [μ m/m] or [microstrain]
- Max Shear Strain \rightarrow Radius of Mohr's circle [μ m/m] or [microstrain]
- Max Principle Stress \rightarrow Max. stress in angle direction [MPa]
- Min Principle Stress → Min. stress in angle +90° direction [MPa]
- Max Shear Stress → Max. shear stress in angle direction [MPa]
- Von Mises Stress → Virtual uniaxial stress [MPa]

Usage of the plugin

The Rosette Math plugin is used to determine the angle and max/min amplitude of strain and stress on a surface. This is used when it is not known which direction of strain/stress has to be expected.

Rosette strain gauges are available combined in one foil (stacked construction), alternatively it is possible to use three separate strain gauges (planar construction).

Fig. 7.118 shows sketches of different rosette types: left: 90° (T), middle: 45°, right: 120° rosette.

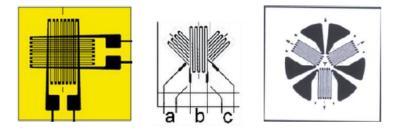


Fig. 7.118: Sketch of different rosette types

Physical basics

This chapter includes some important term explanations.

• Strain : Is the mechanical deformation measured as a relation between length change relative to the initial length:

$$\varepsilon = \; \frac{\mathrm{d} \mathrm{I}}{l} \; \left[\frac{m}{m} \right]$$

- The strain is usually presented in μm/m, so the ratio of elongation is micrometers comparing to the length of a specimen in meters. So, what does that mean if we measure a value of 2000? First of all, we can also express this in percent. Strain in μm/m divided by a factor of 10000 results in elongation in percent. In the case of 2000, the elongation will be 0.2 %.
- Stress : Is defined as the average force per unit area, also taking in account the material.

$$\sigma = \frac{F}{A} \left[\frac{N}{mm^2} \right]$$

• Young's modulus: The formulas shown above only work in the linear part of the *Strain-Stress-Curve*, which is shown in Fig. 7.119. In this area a constant factor between stress and strain exists.

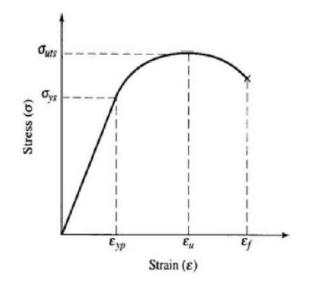


Fig. 7.119: Strain-Stress-Curve

$$E = \frac{\sigma}{\varepsilon} \left[M \frac{N}{mm^2} = GPa \right]$$

Where E is the Young's modulus or Elastic modulus. This constant is depending on the used material (e.g. steel = 210 kN/mm^2). The measured value from the strain gauge is therefore the strain and you get the stress by calculating .

Implemented formulas

The Rosette calculations depend on the selected rosette type and angle reference.

Constants

$\varepsilon_P \dots Max. main strain$

$\varepsilon_Q \dots Min. main strain$

$\theta \dots$ Angle in direction of the max. main strain

Angle Reference

- $A: \theta_{P,Q} = (\ldots)$
- $B: \theta_{P,Q} = (...) 45^{\circ} \text{ or } 60^{\circ}$
- $C: \ \theta_{P,Q} = (...) 90^{\circ} \text{ or } 120^{\circ} \text{ or } 240^{\circ}$

Calculation of 45° and 90° Rosette

Avg Strain

MaxShearStrain

$$\begin{split} \varepsilon_P &= \varepsilon_1 \\ \varepsilon_Q &= \varepsilon_2 \\ \varepsilon_{P,Q} &= \frac{\varepsilon_1 + \varepsilon_3}{2} \pm \frac{1}{\sqrt{2}} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2} \\ \theta_{P,Q} &= \frac{1}{2} \tan^{-1} \left(\frac{2\varepsilon_2 - \varepsilon_1 - \varepsilon_3}{\varepsilon_1 - \varepsilon_3}\right) \end{split}$$

Calculation of 60° and 120° Rosette

$$\begin{split} \varepsilon_{P,Q} &= \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{3} \pm \frac{\sqrt{2}}{3} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2} \\ \theta_{P,Q} &= \frac{1}{2} \tan^{-1}\left(\frac{\sqrt{3}(\varepsilon_2 - \varepsilon_3)}{2\varepsilon_1 - \varepsilon_2 - \varepsilon_3}\right) \end{split}$$

Calculations valid for all Rosette types

• Max/Min Principle Stress

$$\sigma_P = \frac{E}{1 - \gamma^2} (\varepsilon_P + \gamma \varepsilon_Q) \left[\frac{N}{m^2} \right]$$
$$\sigma_Q = \frac{E}{1 - \gamma^2} (\varepsilon_Q + \gamma \varepsilon_P) \left[\frac{N}{m^2} \right]$$

• Von Mises Stress

$$\sigma_{\rm VM} = \sqrt{\frac{\left(\sigma_P - \sigma_Q\right)^2 + \sigma_P^2 + \sigma_Q^2}{2}} \left[\frac{N}{m^2}\right]$$

• Max Shear Stress

$$\sigma_{\rm SP} = \frac{\sigma_P - \sigma_Q}{2} \, \left[\frac{N}{m^2} \right]$$

• Addition to Angle Calculation

The following table shows how to determine the principal axis angle $\varphi 0$ taking the sign of the numerator and the enumerator into account

Quadrant	Z	Ν	Angle ϕ_0
I	+	+	0° ≤ φ0 ≤ +45°
II	+	-	+45°≤φ0≤+90°
111	-	-	-45°≤φ0≤-90°
IV	-	+	0°≥φ0≥-45°

Time reference curve

In OXYGEN, a time reference curve can be created in the Advanced Math options. This serves as a purely visual reference and can be used like other channels in the recorder, etc.

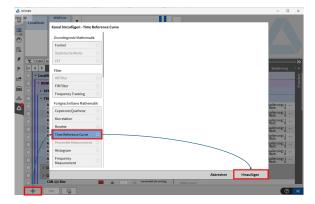


Fig. 7.120: Creating a time reference curve

After creating the reference curve, settings can be defined for, among other things, the type, i.e., whether one or two curves should be created, and the data source, i.e., whether a table or another measurement file should determine the curves. The other options are explained in more detail in Table 7.30. In the following figure, Fig. 7.121, two reference curves, Upper/Lower, was selected as type, the data source is a Table and the start on condition is On Channel.

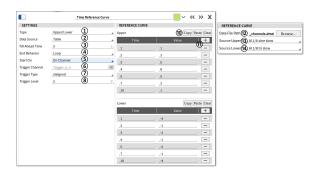


Fig. 7.121: Properties of the time reference curve

Nr.	Name	Description
1	Туре	Select whether to create one (<i>Single</i>) or two (<i>Upper/Lower</i>) reference curves.
2	Data Source	Select what should be the basis for the reference curve. Either a <i>Table</i> with time and value or based on channel from <i>Data file</i> .
3	Fill Ahead Time	A time offset for the reference curve can be set here. This means that the reference curve begins 0500 s before the current time, see Fig. 7.122.

Table 7.30: Reference curve channel properties

continues on next page

Nr.	Name	Description
4	End Behavior	Select whether the reference curve should be com- pletely repeated after the data points have been pro- cessed: Loop, hold the last data point – <i>Repeat Last</i> <i>Value</i> or do not continue – <i>NaN</i> .
5	Start On	There are three options for starting the reference curve. Start <i>On Channel</i> means that the start of the curve is triggered by a channel. Start <i>On Acquisi-</i> <i>tion</i> means that the reference curve starts when data acquisition begins (without measurement). Start <i>On</i> <i>Measurement</i> means that the reference curve starts when the measurement is armed. If the start condi- tion is not met, the first value of thereference curve is repeated.
6	Trigger Channel	Only available for start condition <i>On Channel</i> selection. Select the trigger channel for starting the reference curve. This can be either math channels or analog channels.
7	Trigger Type	Only available for start condition <i>On Channel</i> selection. Select whether the reference curve should start when the trigger level (8) is exceeded or not reached.
8	Trigger Level	Only available for start condition <i>On Channel</i> selection. Selection of the level at which the start condition is met.
9	Rearm Level	Only available for start condition <i>On Channel</i> selection. Selection to define the level required to start the reference curve again on trigger.
10	Reference curve Copy/Paste/Clear	If a data file has been selected as the data source, the data points can be defined either in OXYGEN or in a third-party text editor. To export the table from OXY-GEN, use <i>Copy</i> . To import the table from a text editor, use <i>Paste</i> . The structure is "Time in s" 'Tab' "Value." The table can be deleted with <i>Clear</i> .
11	Reference curve Plus/Minus	Here, lines can be added (+) or deleted (-) for the reference curve.
12	Datafile path	If Table has been selected as the data source, an OXY- GEN measurement file *.dmd can be selected to de- fine the reference curves.
13	Source Upper	Select the channel for the upper reference curve from the measurement file selected in ①.
14	Source Lower	Select the channel for the lower reference curve from the measurement file selected in ①.

Table 7.30 – continued from previous page

The next figure Fig. 7.122 shows an example for an Upper- and Lower-time reference curve with a 5s pre time and the loop end behavior.

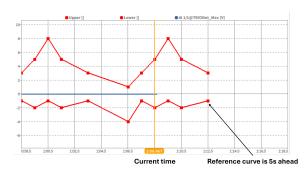


Fig. 7.122: Example for Upper and Lower Time Reference Curve with 5 s pre time (Fill ahead time)

Percentile

This module can be used to add a percentile measurement based on a synchronous or asynchronous time-dependent channel or array. With this calculation it is possible to calculate the threshold value that is exceeded in x% of the measurement time.

To create one or more channels for a percentile measurement, click on the + button in the bottom left corner of the channel list. A pop-up window appears in which the percentile measurement must be selected in the list (see Fig. 7.123). One or more channels must be selected in the channel list before clicking on the + button (see 1) in Fig. 7.123). It is also possible to add channels for the measurement afterwards (see 1) Fig. 7.124). You can specify 1 or more threshold values in %. When selecting multiple threshold values, the individual values must be separated by ";" (see 2) in Fig. 7.123).

After clicking the Add button, a new section appears in the channel list called PERCENTILE MEASURE-MENT Channels. To change the settings afterwards or to add channels or thresholds, click on the small cogwheel (see Fig. 7.124).

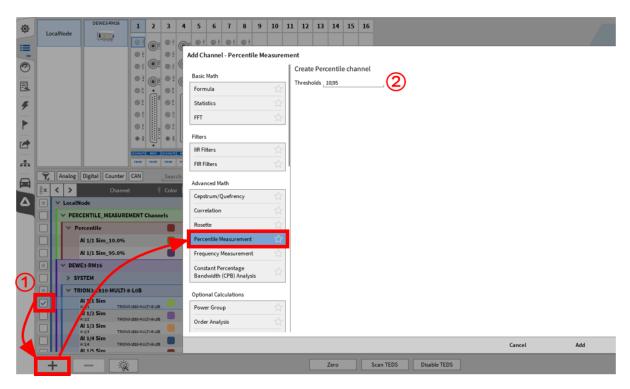


Fig. 7.123: Add a percentile measurement

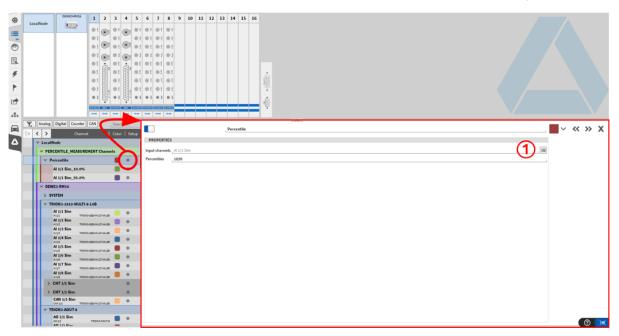


Fig. 7.124: Subsequent changes to the percentile measurement

During the measurement, the values for the percentile measurement are continuously recalculated, but only the last calculated value is saved in the measurement file (*.dmd) and is then available as a single value.

Histogram

The histogram is a math function for the statistical evaluation of a single channel. It can be found in the *Advanced Math* options (see Fig. 7.125).

	Histogram - Al	1/1 - Relative count 🔤 🗸 🐝 🗙
	PROPERTIES	SENSOR SCALING
LocalNode Add Channel - Histogram Filters Filters III Filters Filters FIR Filters Advanced Math Cepstrum/Quefrency Correlation V LocalN Rosette Percentile Measurement Forcentile Measurement	Input Channel Al 1/1 (1)	Scaling type Scaling Sensitivity
A Frequency Measurement Constant Percentage Bandwidth (CPB) A Analysis Optional Calculations Power Group Order Analysis Swept Ine Analysis C CAN II Sim @	Carrect Add	

Fig. 7.125: Creation and configuration of a Histogram

No.	Function	Description
1	Input channel	Selection of channel for which a histogram calculation is to be performed.
2	Lower limit	Minimum value for creating the histogram; values be- low the limit are ignored.
3	Upper limit	Maximum value for creating the histogram; values above the limit are ignored.
4	Number of bins	The number of bins (intervals) displayed on the X-axis.
5	Bin width	The resulting width of the bins is from the limits and number of bins. (upper limit - lower limit) / number of bins
6	Histogram type	The histogram type defines the output (amplitude) of the calculation and the information stored in the out- put channels. The following types are available for se- lection: Absolute number, Relative number and Rela- tive number in [%], Density and Density in [%], Distri- bution and Distribution in [%]

Table 7.31: Settings of a Histogram

Histogram type descriptions:

- Absolute count: Each bin contains the number of measured values within the bin (the value is always counted upwards)
- Relative count: Each bin value is the number of samples within the bin, normalized to the total number of samples counted (the sum of all bins is always 1)
- Relative count [%]: Same as relative count, but expressed as a percentage (the sum of all bins is always 100)
- Density: With empirical probability density, each relative count is divided by the bin width. In this case, the value is not dependent on the number of bins within a range
- Density [%]: Same as density but expressed as a percentage (multiplied by 100).
- Distribution: In an empirical probability distribution, the relative count is cumulated for each bin. This means that each bin is the sum of all lower bins and the current bin. The highest bin has the value 1.
- Distribution [%]: Corresponds to the distribution but is expressed as a percentage. The highest bin has a value of 100.

An example is the following histogram with 13 bins, a lower limit of 1, and an upper limit of 10 is shown in Fig. 7.126. The signal has a maximum value of 8 V, meaning all bins above 8 show no relative count and density, but still a distribution of 1.

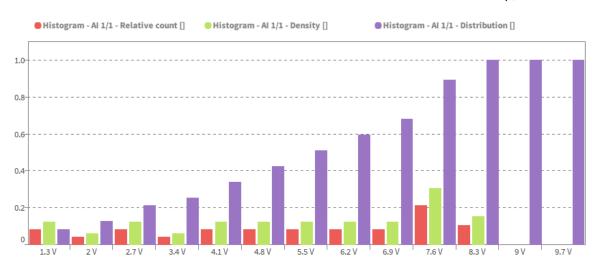


Fig. 7.126: Example of a Histogram with relative count, density and distribution

CocalNo	Add Channel - Frequency Meas	ement	
	Basic Math		
0	Formula		
	Statistics		
	FFT 🔂		
<i>4</i>	Filters		
▶	IIR Filters		
A	FIR Filters		
a	Advanced Math		
	Cepstrum/Quefrency		_
	Correlation		I.
<u> </u>	Rosette		
	Percentile Measurement 🛛 🟠		
	Frequency		
	Measurement Constant Percentage		
	Bandwidth (CPB)		
	Analysis		
	Optional Calculations		
		Cancel Add	
+	—		V ⑦

Frequency measurement

Fig. 7.127: Pop-up window for creating a frequency measurement channel

With this module it is possible to calculate the frequency of a periodical signal. The calculation is based on a block-wise calculation. To create one or several Frequency Measurement Channels click on the *+* button in the lower left corner of the channel list menu. A pop-up window will appear (see Fig. 7.127) where *Frequency Measurement* must be selected. The user can select several input channels simultaneously to create several frequency calculations before clicking on the *+* button or choose the channels after creating the Frequency Measurement channel.

After clicking on the *Add button* a new section in the channel list appears named Frequency Measurement Channels.

When clicking on the little gear button the settings of the frequency channel will open.

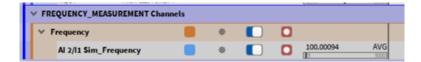


Fig. 7.128: Frequency Measurement Channels in Channel List

	Frequency	~	>>	X
PROPERTIES				
Input channels	, Al 2/L Sim	 		:=
Window overlap	50			%
Window duration	.02	 		s_
Min. frequency	25			Hz
Max. frequency	5000		1	Hz

Fig. 7.129: Frequency Measurement Channel settings

The following settings are available:

- Input channels: the input channels for the calculation can be selected when clicking on the button; a small pop-up window will appear where the desired channels can be changed or selected.
- Window overlap: the window overlap can be entered here from 0 to 90 %.
- Window duration: the window duration can be entered in this field, or a value can be chosen from the dropdown list; the minimum window duration is 10 ms up to 1 s.
- Min. frequency: the minimum frequency which should be calculated must be entered here; the minimum frequency is 0 Hz.
- Max. frequency: the maximum frequency is half the sample rate to account (Nyquist frequency).

CPB analysis

This is a standard feature and requires no additional license.

The CPB analysis computes a constant percentage bandwidth spectrum according to EN 61260 in Octave, Third octave or Twelfth octave resolution.

Creating a CPB Analysis

R2_
HZ
1
ridual bins
\sim
(3)
Cancel Add

Fig. 7.130: Creating a CPB Analysis

- 1. Go to the Channel List and select one or several channels by checking their check boxes and press the + button
- 2. Select CPB Analysis, choose the proper calculation options and enable the required output channels (Details can be found in CPB analysis options)
- 3. Press *Add* afterwards to create the calculation. The channels will be added to the Channel List (see ④ in Fig. 7.131)
- 4. The settings can be accessed afterwards by clicking on the Gear button of the channel (see (5) in Fig. 7.131)

An Array Chart instrument can be used for visualizing the CPB spectrum. Further details can be found in Array Chart with Total column included.

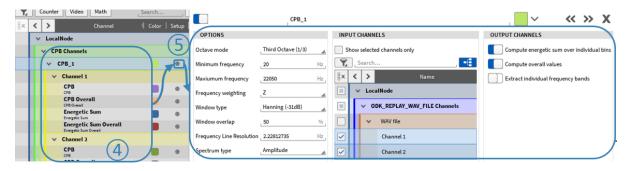


Fig. 7.131: CPB Analysis with extracted 100 Hz and 250 Hz bin

CPB analysis options

The following options can be selected for a CPB Analysis (see (2) in Fig. 7.130):

- Group Name: Set a group name for the actual calculation which appears in the Channel List
- Octave mode: Select Octave, Third octave or Twelfth octave resolution (grouping according to EN 61260)
- Minimum Frequency: Set a minimum frequency for computation. If the selected frequency is not the center frequency of a CPB bin, the bin including this frequency will be used as minimum bin.
- Maximum Frequency: Set a maximum frequency for computation. If the selected frequency is not the center frequency of a CPB bin, the bin including this frequency will be used as maximum bin. The maximum frequency which can be set is 500 kHz.
- Window type: Select between Hamming, Hanning, Rectangular, Blackman, Blackman-Harris, Flattop, Flattop-Bartlett Window for the spectral analysis
- Overlap: Select an overlapping factor from 0 ... 90 % for the spectral analysis
- Amplitude Spectrum: Select between Amplitude spectrum or Decibel spectrum with freely definable reference value and corresponding reference level
- Frequency Weighting: Select between frequency weighting according to DIN-EN 61672: A-, B-, C-, D- or Z- (linear) weighting
- Output Channels: Activate output channels:

The actual CPB spectrum (changing in time) is calculated per default. The channel name is CPB (see 4 in Fig. 7.131).

If *Compute energetic sum over individual bins is* enabled, the energetic sum for the spectrum is calculated. The channel name is *Energetic Sum* (see 4 in Fig. 7.131).

In case it is an Amplitude spectrum, the calculation is the following:

Energetic Sum
$$= \sqrt{\displaystyle\sum_{i=1}^n x_i^2}$$

- n ... Number of CPB bins
- $x_i \dots CPB$ bin with index i

In case it is a *Decibel* spectrum, the calculation is the following:

Energetic Sum =
$$10 * \log \sqrt{\sum_{i=1}^{n} (10^{\frac{x_i}{10}})^2}$$

- n ... Number of CPB bins
- xi ... CPB bin with index i

If *Compute overall Values* is enabled, one CPB spectrum averaged for the whole measurement time and an energetic sum (if enabled) averaged for the whole measurement time will be calculated.

The calculation will be reset at recording start. The channel name will be *CPB Overall* and *Energetic Sum Overall* (see 4 in Fig. 7.131).

If *Extract individual frequency bands* is enabled, frequency bands can be output as time domain channels. I.e. If 100 Hz is entered, the 100 Hz band will be extracted as time domain channel to analyze the time dependent trend.

It is possible to extract several bands (see Fig. 7.132).

If the entered frequency is not the center frequency of a CPB bin, the bin including this frequency will be extracted.

	_		arch	[CPB_1	· · · · · · · · · · · · · · · · · · ·			
.∃×	Channel il Color Setup LocalNode CPB Channels				OPTIONS		INPUT CHANNELS	OUTPUT CHANNELS		
					Octave mode	Third Octave (1/3)	Show selected channels only	Compute energetic sum over individual bins		
		✓ CPB_1		۲	Minimum frequency	20 Hz	Search	Compute overall values		
		✓ Channel 1			Maxiumum frequency	22050 Hz	🗄 🗙 < 🕨 Name	Extract individual frequency bands		
		CPB CPB		۲	Frequency weighting	Z 4		Selected bands: 100:250		
		CPB Overall CPB Overall		۲	Window type	Hanning (-31dB)	ODK_REPLAY_WAV_FILE Channels			
		Energetic Sum Energetic Sum		۲	Window overlap	.50 %	> WAV file			
		Energetic Sum Overall Energetic Sum Overall		۲						
		CPB Band (100 Hz) CPB Band (100 Hz)		۲	Frequency Line Persolution		V TRIONet			
		CPB Band (250 Hz) CPB Band (250 Hz)		۲	Spectrum type	Amplitude	TRIONet			

Fig. 7.132: CPB Analysis with extracted 100 Hz and 250 Hz bin

7.4.4 Optional calculations

Power Group

This is an optional feature and requires a license.

4						
		©: ©: ©: ©: 0: 0: 0:	Add Channel - Power Group			
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Optional Calculations	Create a new power group based on 1 se	elected channels.	
		TOTAL CONTRACTOR CONTRACTOR	Power Group			
Ť.			Order Analysis			
	Y	Analog Digital Counter CAN Search	Swept Sine Analysis			
		Channet	Psophometer 🖒			_
_		V DEWE3-RM16	Sound Level			
		> SYSTEM	Tape Sensor			
		V TRION3-1820-MULTI-8-LOB	Resolver 🟠			
		Al 1/1 Sin	Matrix Sampler			
		Al 1/2 Sm Al 1/2 Sm Al 1/2 Sim	Protocols			
	Н	Ai 1/3 TRIONS-1820-MULTI-6-L08	XR/CPAD Decoder			
			OBD2			
		1/6 Sim	MIL-STD-1553 Decoder			
		1 1/7 Sim	ARINC Decoder			
		AI 1/8 Sim AI 1/8 TRIONS-1835-MUUTI-8-L08	Data Input			_
	Ц	CNT 1/1 Sim 6	Ethernet Receiver			
	Н	CAN 1/1 Sim	SCPI Query			
	H	CAN 1/1 TRIONS-1026-MULTI-6-L08	Modbus Receiver			
		Al 2/2 Sim				Cancel Add
		Al 2/3 Sim	-1.9991999	AVG Voltage	10 kHz -10 V 10 V	Scale: 1 Offset: 0
(1)	Al 2/4 Sim	-6.7998396	AVG Voltage	10 kHz -10 V 10 V	Scale: 1 Offset: 0
	-	- 🖹 2		Zero Scan T	TEDS Disable TEDS	

Fig. 7.133: Pop-up window for creating a Power Group

A Power Group can be created by pressing either the *Add* button or the *Calculator* button in the lower left corner of the Data Channels menu (both buttons marked red in Fig. 7.133).

For details about the OXYGEN Power module refer to the *Power Technical Reference Rx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

OXYGEN Order Analysis plugin

This is an optional feature and requires a license.

۲			0 0 0 0 0 0 0 0 0	1 01 01 01 01 01 01 01 01 01 01 01 01 01
1			Add Channel - Order Analysis	
da			Optional Calculations	Perform order analysis.
	¥.	Analog Digital Counte	Power Group	2
	_	>	Order Analysis	Group name_Order Analysis Channels,
	•	LocalNode	Swept Sine Analysis	2
		V DEWEL-PAIS	Psophometer	2
		> SYSTEM	Sound Level	2
		V TRON3-1820-MUC N 1/1 Sim	Tape Sensor	2
	9	A 1/2 Sim	Resolver	2
	님	A 1/3 Sim	Matrix Sampler	2
	H	A11/4 Sim	Protocols	
	ΞI	Al 1/5 Sim		
	ΗI	A 1/6 Sim		2
	ΗI	Al 1/7 Sim		2
	H.	Al 1/8 Sim	ML-STD-1553 Decoder	2
	ŏ	> CNT 1/1 Sim	ARINC Decoder	2
		> CNT 1/2 Sim	Data Input	
		CAN 1/1 Sim		
		V TRION3-1820-MUC		2
		Al 2/2 Sim		
		Al 2/2 Sim		
	91	Al 2/3 Sim		Cancel Add
	411	Al 2/4 Sim	NA 18540-5408	
	+	%	*	Zero Scan TEDS Disable TEDS

Fig. 7.134: Pop-up window generating an order analysis

An order analysis can be created and configured by pressing the *Add* button in the lower left corner of the Data Channels menu (marked red in Fig. 7.134).

For details about the Order Analysis plugin refer to the *DEWETRON_Oxygen_Order_Analysis_vx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Swept Sine Analysis

This is an optional feature and requires a license.

The Swept Sine Analysis can be used to determine the transfer function and the bode diagram of a DUT that is stimulated by a shaker which is driven by a wave-generator replaying a sine sweep. An exemplary testbed could look like the following (see Fig. 7.135):

•			Add Channel - Swept Sine Analysis		
1			Optional Calculations	Perform swept sine analysis for shaker testing.	
-		C225	Power Group	t or run manage, and analysis for analysis worker,	
ሐ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Order Analysis 😭	Group name _ Swept Sine Analysis Channels	
		Analog Digital Counter CAN	Swept Sine Analysis		
		< > Ourse	Psophometer 🔶		
-		V DEWENRMIN	Sound Level		
		> SYSTEM	Tape Sensor	1	
		V TRION 1820 MULTI-8-LOB	Resolver 😒		
	2	Al 1 Sim	Matrix Sampler		
		A /2 Sim 1/2 Sim 1/3 Sim	Protocols		
	н	11 TRONS 400-410	XR/CPAD Decoder		
	님	Al 1/5 Sim	0802		
	H	Al 1/6 Sim	ML-STD-1553 Decoder		
		ALLS TECHS-UD-HU AL 1/7 Sim H 1/7 TECHS-UD-HU	ARINC Decoder	1	
		Al 1/8 Sim			
		> CNT 1/1 Sim	Data Input		
		> CNT 1/2 Sim	Ethernet Receiver		
		CAN 1/1 Sim CAN 1/1 Sim TECHD-300-400	SCPI Query		
		V TRION3-1820-MULTI-8-L08	Modbus Receiver		
(2)	S	Al 2/1 Sim	• · · · · · · · · · · · · · · · · · · ·		
		Al 2/2 Sim			Cancel Add
		Al 2/3 Sim		2.0007999 AVU Voltage 30 M/u	-30 V _ 20 V Offset 0
		Al 2/4 Sim		2.7998398 AVG Voltage 10 kHz	-30 V _ 30 V State 1 Offset 0
	-+	- 🙊		Zero Scan TEOS	Disable TEDS

Fig. 7.135: Exemplary testbed to use the Swept Sine Analysis plugin

A DUT is standing on a shaker. The shaker is driven by a Signal Generator which replays a sine sweep. One accelerometer is applied directly on the shaker and provides the reference (source) signal that is used to stimulate the DUT. One or several additional accelerometers are applied directly on the DUT that measure the acceleration on the DUT surface on different positions (sink).

These signals can be applied to the Swept Sine Analysis plugin to determine the transfer function and the phase shift from source to sink.

Setting up a Swept Sine Analysis

To set up the Swept Sine Analysis plugin, perform the following steps:

- 1. At first, mark the checkbox of the channel which provides the reference signal for the Swept Sine Analysis (see ① in Fig. 7.136)
- Next, mark the channel that provides the signal measured on the signal sink (see 2) in Fig. 7.136).
 Several sink signals could be applied to one Swept Sine Analysis group.
- 3. Click on the *PLUS* (see ③ in Fig. 7.136) sign to open the math setup and select *Swept Sine Analysis*. Edit the channel group name if desired and click on the *OK* button afterwards.

	-		All Channel - Sample Samples	
#	XI	Andag Baller Conciler (10) Saurilles (10)	Aver Tell	Pedicet angli ana analysis for abuter facility. 35
	1. 4	Count Color Mag Aller	femile 🔅	
1	0	Lonia	Sees 2	Orașe taria - Jorgi Din Anțin (Tarvali
1		+ Paser Group	atitus 😒	
de.		ADMERICAL DIR N CONTRACTOR DI LA CONTRACTORIZIA DI LA CONTRACTOR DI LA CON	Altitus 🔅	
	岩	> NARTALAS IN A CONTRACT OF MERICAN	en 🗠	
	8) (1970)	Request Network	
۵		 THEN: USD POINT 4 	Munual Refs.	
1		Aufe fan Innerstaan B + C	Page Steep	
		Auto bie Tearrain and B . C	Garbaja 🔅	
	8	A sale fan	Surgi Star Scalpen 🔹 😫	
	×	Auto Bar	Rada 🔅	
	21	Autoba Ba A	Paplandar 🔅	
	ō.		Institut ()	100 March 100 Ma
		A-1018m	Mits Sarghe	
-		~ 10000-000-0001-4-3	Context Percentage	
2		And the Manufacture B + C	Bendvallh 10% knalysk	
		Atoba B 1	Balla Severant	and a second sec
	×.	and the second s	New Adverse (A)	
	×	A DE DA MARCADA DE		Canad Add
	H.) OF US A		
	8	Late an line and an	E estanda 1	N/L Net
		· //IDQUDICT_REDUKTIONED County		
		- frequency 🐻 A 🐔	0	
		and the factors and the state	A 164 ANS	The second secon
	+	- 9		2m Lar 100

Fig. 7.136: Swept Sine Analysis

Setup overview

Fig. 7.137: Swept Sine Analysis setup – overview

Table 7.32: Sv	went Sine Ana	alvsis setun –	- overview
10016 7.52. 50	wept sine And	ilysis setup –	000101000

No.	Function	Description
1	<i>Reference channel</i> selection	The channel that provides the reference signal can be edited here; This channel is used to determine the fundamental frequency which is available in the channel <i>F_fund</i> (see <i>Swept Sine analysis output channels</i>)

continues on next page

No.	Function	Description
2	Detection Threshold selection	Amplitude threshold for determining the fundamen- tal frequency; If the amplitude of the reference chan- nel is below the specified threshold (percentage of the channel input range), the fundamental frequency will not be determined; I.e. Channel Input Range = 100 V and Detection Threshold = 1%; The signal amplitude must be 1V or higher to determine the fundamental frequency
3	Calculation mode selection	<i>RMS</i> or <i>Zero-Peak</i> selectable; The output channels (see <i>Swept Sine analysis output channels</i>) may contain either the RMS or Zero-to-Peak level as result
4	Start frequency selection	Enter the lower frequency limit for the Swept Sine Analysis
5	Stop frequency selection	Enter the upper frequency limit for the Swept Sine Analysis
6	Step size selection	Enter the frequency resolution of the Swept Sine Anal- ysis
7	Periods selection	Number of signal periods of the reference signal that shall be used for updating one value
8	Input channels selection	Select the input channels that contain the sink signals (sensors that applied on the DUT); One or several sensors can be selected
9	<i>Enable immediate value channels</i> switch	The channels that contain the time domain signals (see <i>Swept Sine analysis output channels</i>) are enabled with this switch; Per default disabled
10	Enable Bode diagram switch	The channels that contain the frequency domain sig- nals (see <i>Swept Sine analysis output channels</i>) are en- abled with this switch; Per default enabled
11	Max update rate selection	Select the calculation update rate (from 1 to 10s)

Table	7.32 -	continued	from	previous	page
-------	--------	-----------	------	----------	------

Swept Sine analysis output channels

- F_fund: Contains the fundamental frequency of the Swept Sine Analysis; Calculation based on the signal provided by the reference (source) channel
- *ChannelName_*iRMS or *ChannelName_*iPeak: Time domain channel; Contains the amplitude (RMS or Zero-to-Peak level depending on the selection in ③ in Fig. 7.137) of the signal at the actual frequency; The amplitude is only referring to the fundamental frequency signal components; Can be assigned to a Recorder (see *Recorder*), Digital Meter (see *Digital meter*) or similar.
- *ChannelName_*iPhi: Time domain channel; Contains the phase shift of the signal at the actual frequency; Can be assigned to a Recorder (see *Recorder*), Digital Meter (see *Digital meter*) or similar.
- *ChannelName_*iUFRMS or *ChannelName_*iUFPeak: Time domain channel; Contains the amplitude (RMS or Zero-to-Peak level depending on the selection in ③ in Fig. 7.137) of the signal at

the actual frequency; The amplitude is referring to the entire signal components; Can be assigned to a Recorder (see *Recorder*), Digital Meter (see *Digital meter*) or similar

- *ChannelName_*RMS or *ChannelName_*Peak: Frequency domain channel; Contains the transfer function (RMS or Zero-to-Peak level depending on the selection in ③ in Fig. 7.137); The amplitude is referring to the fundamental frequency signal components; Can be assigned to a Spectrum Analyzer (see *Spectrum analyzer*) instrument for displaying the data.
- *ChannelName_Phi:* Frequency domain channel; Contains the phase diagram; Can be assigned to a Spectrum Analyzer (see *Spectrum analyzer*) instrument for displaying the data.
- *ChannelName_*UFRMS or *ChannelName_*UFPeak: Frequency domain channel; Contains the transfer function (RMS or Zero-to-Peak level depending on the selection in ③ in Fig. 7.137); The amplitude is referring to the entire signal components; Can be assigned to a Spectrum Analyzer (see *Spectrum analyzer*) instrument for displaying the data.

Calculation remarks

- The maximum frequency span is from 1 to 20000 Hz. To achieve a suitable accuracy, it is recommended to set the sample rate of the input channels to at least 20 times the maximum frequency, i.e. to 20 kHz in case of 1 kHz maximum frequency span.
- The highest resolution of the frequency domain channels is 1 Hz. Data of non-integer frequency bins is rounded to the next integer frequency bin.
- If the sweep does not exactly hit exactly one frequency bin which is contained in the data array, data for the certain frequency bin is filled up by linear interpolation of the two narrowed frequency bins
- The channels containing frequency domain data contain only one single value data array at the end of the measurement. In case of multi-file recording (see *Multi-file recording*), this data array will only be included in the last data file, the other files will not contain this data.
- If the sweep is passing the same frequency several times, there will not be several values for the same frequency stored, but the maximum value only is stored to the data file.
- If the screen is frozen (see 7) in Fig. 3.5) and the orange cursor is moved either in the Overview Bar or in a Recorder, the data of the single value array will change approximately every second as the array is continuously filled with data. In the end, there will only be the final value.
- As the channels containing frequency domain data contain only one single value data array at the end of the measurement, there will not be reduced Statistics data available (see *Triggered Events*).

Psophometer

In telecommunications, a psophometer is an instrument that measures the perceptible noise of a telephone circuit.

The core of the meter is based on a true RMS voltmeter, which measures the level of the noise signal. This was used for the first psophometers, in the 1930s. As the human-perceived level of noise is more important for telephony than their raw voltage, a modern psophometer incorporates a weighting network to represent this perception. The characteristics of the weighting network depend on the type of circuit under investigation, such as whether the circuit is used to normal speech standards (300 Hz - 3.3 kHz), or for high-fidelity broadcast-quality sound (50 Hz - 15 kHz).

Setup

The Psophometer plugin is installed with every OXYGEN installation, starting from R3.5.1 *A dedicated plugin license is required for the calculation option to be visible.*

Usage

1. Select one or multiple channels as inputs for the Psophometer calculation.

Note: Input channels must have a sampling rate of 20 kHz or higher.

*last	.dms - Oxygen										- 0
¥	LocalNode	DEWE2-A4	4			00	Biwod-w				
] m 🤇	000	00	00(
			~ •		H2 CH3		•				
			-	CH 1	CH 3 CH 4		Ö				
-	All 🚽 🗄	Search		4 channels selected	1		<	«			
ĺ		X Active Stored	i c	hannel	Color Set	tup Scale	ed Value	Mode	I Sample Rate	Range	Scaling
	<	LocalNode									
1	▼	DEWE2-A4									
		TRION-1620-A	CC-6-BNC								
		Image:	Al 1/1 Sim	TRION-1620-ACC-6-BN	c 🔲 🐗	0.000000 -100	AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
		I	Al 1/2 Sim	TRION-1620-ACC-6-BN	» 🔍 «		AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
		Image:	Al 1/3 Sim	TRION-1620-ACC-6-BN	c 📕 🖇	\$ 59.999993	AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
		Image:	Al 1/4 Sim	TRION-1620-ACC-6-BN	. 🔲 🔹	-51.999994	AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
-1			Al 1/5 Sim	TRION-1620-ACC-6-BN	c 📕 🤞	-27.999997 -100	AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			Al 1/6 Sim	TRION-1620-ACC-6-BN	c 📒 🐗	9.999999 -100	AVG	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
	✓	CNT 1/1 Sim			Ŕ	\$F					
			CNT 1/1 Sim	TRION-1620-ACC-6-BN	c 📕 🤞	1.608330e -2147483648	+5 AVG	Events	20000 Hz	-2.14748365e748365e+009	Scale: 1 Unit: Offset: 0
			Frequency_C	TRION-1620-ACC-6-BN	c 📒 🐗	1.000000e	+6 AVG	Frequency	20000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Uz Offset: 0
			Angle_CNT 1	/1 Sim vent TRION-1620-ACC-6-BN	ه 🔳 «	1.130859e	+5 AVG	Rotation	10000 Hz	0 ° 360 °	Scale: 1 Unit: ° Offset: 0
			Speed_CNT 1 CNT 1/1_Velocity	1/1 Sim TRION-1620-ACC-6-BN	. 🗖 🔹	1.171875e	+5 AVG	Velocity	10000 Hz	-100000 rpm 100000 rpm	Scale: 1 Um Offset: 0
	✓	TRION-1850-M									
			Al 2/1 Sim	TRION-1850-MULTI-4-		₽ -0.000000 -10	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Unit: V Offset: 0
			Al 2/2 Sim	TRION-1850-MULTI-4-		0.040644 -10	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Unit: V Offset: 0
			Al 2/3 Sim			\$ 5.999999	AVG	Voltage	10000 Hz	-10 V 10 V	Scale: 1 Unit: V
	+		ž.					Zero			

Fig. 7.138: Channel list with multiple selected channels

- 2. Then open the "Add Channel" dialog by pressing the plus button.
- 3. Select Psophometer. The dialog now shows the Psophometer frequency weighting settings (see *Weighting*) which can be made.
- 4. The newly created Psophometer calculation group can be named individually.

V

#		
	Add Channel - Psoph	
	Optional Calculations	
ф	Power Group	Comessage Plat Unweighted
	Analog Digital Counter CAN Order Analysis	
	Ex Charvel Swept Sine Analysis	Group name , Psophometer Osannels
۵	LocalNode Pophometer	
	v DEWED RMIS Sound Level	
	SYSTEM STORE LTD TRION: - 100 MULTI # LOB Tape Sensor	
	A 1/2 Sim	
	A 12 Sim	
	All/J Sim	E Contraction of the second se
	1/4 Sim Protocols	
	All 1/5 Sim Texes ages XR/CPAD Decoder	☆
		☆
	Al 1/7 Sim 127 Texts ages ML-STD-1553 Decode	· (2)
	Al 1/8 Sim TEXAL USA	
	CNT 1/1 Sim	
	Data Input	
	CAN 1/1 Sime Con 1/1 Sime Con 1/1 Sime Con 1/1 Sime	
	TRION3 1820 MULTI & LOB SCPI Query	
	Al 2/1 Sim Modbus Receiver	\$
	Al 2/2 Sim	Cancel Add
	Al 2/3 Sim TEONS 4004	
	Al 2/4 Sim Terreturnation 🐻 🔹	C 12996399 AVG Voltage 30 kHz -30 V 50 V Struct 0
	+ - 🙊	Zero Scan TEDS Disable TEDS

Fig. 7.139: Add Channel dialog showing Psophometer options

*last.	dms - Oxygen									~			- 0
	LocalNode	DEWE2-A4	4	00	0	0			I-POWER				
		4.20	m	00	0	0	00	00	1810%				
			2	CH 1	CH 2		CH 3	CH 4	1850-MULTI				
			-				CH 4	CH 5 CH 6	620-ACC				
1	All 🔬 Sea	rch			~			<u> </u>		« ——			
Γ	< > [×	Active 🗄 Stored	l	Channel	:	Color	Setup	Scaled V	alue	Mode i	Sample Rate	Range	Scaling
	•	LocalNode											
		Psophometers											
L			Al 1/1 Si Al 1/1 Sim P	im_psoRMS sophometer	ITU-T 0.41		۲	5.050100	AVG 100	ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
Ш			AI 1/2 Sim P		ITU-T 0.41		٢	37.314685	AVG 100]	ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
			AI 1/3 Sim P		ITU-T 0.41		۲	0.000200	AVG 100	ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
1			Al 1/4 Si Al 1/4 Sim P	im_psoRMS	ITU-T 0.41		۲	0.000062	AVG 100]	ITU-T 0.41	20000 Hz	0 V 100 V	Scale: 1 Unit: V Offset: 0
		DEWE2-A4											
I.		TRION-1620-AC											
L			AI 1/1 S	TRION-10	20-ACC-6-BNC		\$	0.000000	AVG 100	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
I.			AI 1/2 S	TRION-10	20-ACC-6-BNC		٢	-0.000000	AVG 100]	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
L			AI 1/3 S		20-ACC-6-BNC		۲	59.999993	AVG 100	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			AI 1/4 S	TRION-10	20-ACC-6-BNC		۲	-43.999995	AVG 100]	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			AI 1/5 S	TRION-10	20-ACC-6-BNC		٢	-35.999996	AVG 100]	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
			AI 1/6 S		20-ACC-6-BNC		۲	-9.9999999	AVG 100]	Voltage	20000 Hz	-100 V 100 V	Scale: 1 Unit: V Offset: 0
	✓	CNT 1/1 Sim					豪						
			CNT 1/1 CNT 1/1		20-ACC-6-BNC		۲	5.591663e+5	AVG 2147453647	Events	20000 Hz	-2.14748365e748365e+009	Scale: 1 Unit: Offset: 0
			Frequer	b TRION-10	im 320-ACC-6-BNC		۲	1.000000e+6	AVG 8000000	Frequency	20000 Hz	0.001 Hz 80000000 Hz	Scale: 1 Uz Offset: 0
			Angle_0	NT 1/1 Sim			۲	3.931641e+5	AVG	Rotation	10000 Hz	0 ° 360 °	Scale: 1 Unit: °
	+	- 3	<							Zero			

5. Finally, press Add to create the new calculation group.

Fig. 7.140: Channel list showing new Psophometer calculation group

The channel setup is used to modify each channel's settings and a top review of signals. Additionally, depending on the selected mode, connector pinout is displayed.

∆ *la:	st.dms - Oxygen						– 🗆 X
\$	LocalNode	DEWE2-A4					
0				CH 3 CH 4			
E.			- 0 0 0 (CH 4 CH 5 CH 6			
<i>₹</i>	All Sea	Active : Stored	Channel : Color	AI 1/1 Sim Psophometer ITU-T 0.41	Al 1/1 Sim_psoRMS	`	« » x
<u> </u>				PSOPHOMETER OPTIONS		SCALING	
		Psophometers 1		Reference channel: Al 1/1 Sim		Scaling 2-point	
.th			AI 1/1 Sim_psoRMS	Mode: ITU-T 0.41	A	• Scaling Sensitivity	
			V 1/2 Sim Psophometer TU-T 0.41			Unit V	
î			AI 1/4 Sim_psoRMS			Scaling 1 V/V	
Ľ	DEWE2-A4				Offset 0 V	Zero	
	TRION-1620-ACC-6-BNC						
			Al 1/1 Sim H 1/1 TRION-1620-ACC-6-BNC Al 1/2 Sim	PREVIEW			
			N 1/2 TRION-1620-ACC-6-BNC	8 1			5.050 V MAX
			N 1/3 TRION-1620-ACC-6-BNC				5.050 V AC RMS
		A A	Al 1/5 Sim				0.000 V
			Al 1/6 Sim				AVG 5.050 V
	CNT 1/1 Sim			Σ			MIN 5.050 V
		CN 0	CNT 1/1 Sim				5.050 V
			Frequency_CNT 1/1 Sim				
		CN 🖬 CN	Angle_CNT 1/1 Sim	o -10s		-0.02s	5.050 V
			Speed_CNT 1/1 Sim NT 1/1_Velocity TRION-1620-ACC-6-BNC				

Fig. 7.141: Channel setup, preview, and pin out and connection

Psophometer calculations are then available as math channels.

Fig. 7.142: Sidebar channel list showing the calculated Psophometer channels

Calculation

The calculation is based on FFT.

Depending on the input sampling rate, the FFT block size is chosen to be 2^N samples while the time window stays between 75 and 125 ms, to ensure passing the detector circuitry tests (see *ITU-T Recommendation 0.41 (10/94)*).

Sampling rate	FFT block size		
20 kHz	2048		
50 kHz	4096		
100 kHz	8192		
200 kHz	16384		

Weighting

Different weighting options are available:

ITU-T 0.41

Frequency (Hz)	Relative weight (dB)	Tolerance (± dB)
16.66	-85.0	_
50	-63.0	2
100	-41.0	2
200	-21.0	2
300	-10.6	1
400	-6.3	1
500	-3.6	1
600	-2.0	1
700	-0.9	1
800	0.0	0,0 (reference)
900	+0.6	1
1000	+1.0	1
1200	0.0	1
1400	-0.9	1
1600	-1.7	1
1800	-2.4	1
2000	-3.0	1
2500	-4.2	1
3000	-5.6	1
3500	-8.5	2
4000	-15.0	3
4500	-25.0	3
5000	-36.0	3
6000	-43.0	_

Fig. 7.143: Telephone circuit Psophometer weighting coefficients and limits

C-message

Frequency (Hz)	Relative weight (dB)	Tolerance (± dB)
60	-55.7	2
100	-42.5	2
200	-25.1	2
300	-16.3	2
400	-11.2	1
500	- 7.7	1
600	- 5.0	1
700	- 2.8	1
800	- 1.3	1
900	- 0.3	1
1000	0.0	0.0 (reference)
1200	- 0.4	1
1300	- 0.7	1
1500	- 1.2	1
1800	- 1.3	1
2000	- 1.1	1
2500	- 1.1	1
2800	- 2.0	1
3000	- 3.0	1
3300	- 5.1	2
3500	- 7.1	2
4000	-14.6	3
4500	-22.3	3
5000	-28.7	3
	ion shall continue to increase at per octave until it reaches a val	

Fig. 7.144: C-message weighting coefficients and accuracy limits

Flat

Frequency (Hz)		Attenuation
< 300	Increasing	24 dB/octave (Note 1)
300	Approximately	3 dB (Note 2)
400-1020	≤±	0.25 dB
1020		0 dB
1020-2600	≤±	0.25 dB
3400	Approximately	3 dB (Note 2)
> 3400	Increasing	24 dB/octave (Note 1)

NOTES

1 $\,$ Below 300 Hz and above 3400 Hz the attenuation shall increase at a slope not less than 24 dB/octave up to an attenuation of at least 50 dB.

2 The exact cut-off frequency shall be chosen to achieve an equivalent noise bandwidth of 3.1 kHz \pm 155 Hz.

Fig. 7.145: Characteristics of the optional flat filter with an equivalent noise bandwidth of 3.1 kHz (bandwidth of a telephone channel)

Unweighted

V

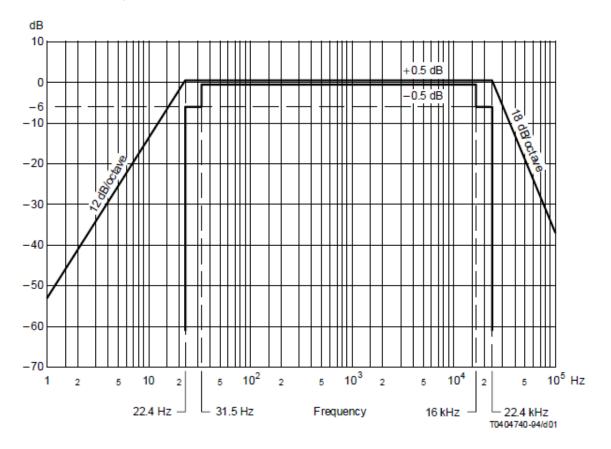


Fig. 7.146: Frequency response characteristics for unweighted measurements

Comparison between Psophometric and C-message weighting

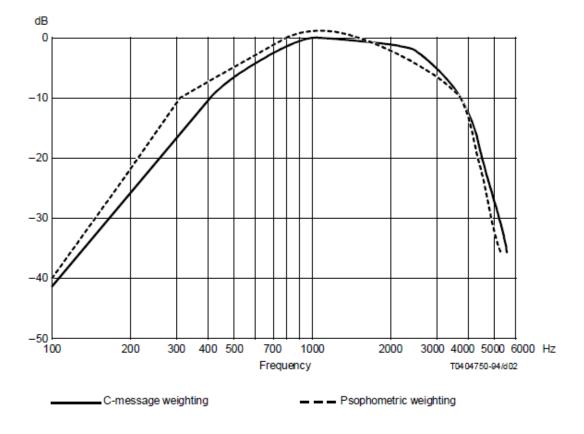


Fig. 7.147: Comparison between psophometric and C-message weighting

ITU-T Recommendation 0.41 (10/94)

https://www.itu.int/rec/T-REC-O.41-199410-I/en

OXYGEN Sound Level plugin

This is an optional feature and requires a license.

Þ					
			Add Channel - Sound Level		
		-	Optional Calculations	Perform sound level measurements with	h selectable weighting modes.
ф			Power Group	Group name	Sound Level Channels
	٧,	Analog Digital Counter CAN	Order Analysis		
	Ξ×	< > Oavel	Swept Sine Analysis	Frequency weighting (DIN-EN-61672-1)	۸
4		✓ LocalNode	Psophometer 🖒	Time weighting (IEC 63672 and IEC 651)	Fest (125 ms)
		V DEWEX-RM16		Interval Duration	<u>ها</u> ــــــــــــــــــــــــــــــــــــ
		> SYSTEM	Sound Level 🏫	Reference Value	20 1 ²⁰ A
		V TRION3-1820 HULTI-8-LOB	Tape Sensor	Output channels	L(x)_eq (Overall Energy Equivalent Sound Pressure Level in [dB(x)])
		Al 1/1 5	Resolver 🔅		Time dependent Sound Pressure Level in [dB(x)]
		Al 1/2 Sim	Matrix Sampler 🔅		Frequency weighted Sound Pressure in raw unit [Pa]
		Al 3 Sim	Protocols	·	$\hfill \hfill $
		Arti/4 Sim	XR/CPAD Decoder		Overall min, and max, occuring Sound Pressure Level in [d8(x)]
		1/5 Sim			Interval logged L(x)_eq in (dB(x))
		A 1/6 Sim			Interval logged min., max. and average occuring Sound Pressure Level in (dB(x))
		AL 1/7 Sim	MIL-STD-1553 Decoder	1	
		AL 1/8 Sim	ARINC Decoder		Percentile Sound Pressure Level statistics in [dB(x)]
		> CNT 1/1 Sim > CNT 1/2 Sim	Data Input		
		CAN 1/1 Sim	Ethernet Receiver		
	n	V TRION3-1830-MULTI-8-L08	SCPI Query		
		Al 2/1 Sim	Modbus Receiver		
	n	Al 2/2 Sim		11	
	ň	AL20 TRONS (0054 Al 2/3 Sim AL20 TRONS (0054			Cancel Add
		A 2/4 Sim		0.3996400 AVG	Voltage 30 kHz -30 V _ 30 V Other 3
					for TOL Double TOL
	-	🙊		Zero	Scan TEDS Disable TEDS

Fig. 7.148: Pop-up window for generating a sound level plugin

A Sound Level can be created and configured by pressing the *Add* button in the lower left corner of the Data Channels menu (marked red in Fig. 7.148).

For details about the Sound Level plugin refer to the *DEWETRON_Sound_Level_determination_vx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Modal test

This is an optional feature and requires a license (OXY-OPT-MODAL).

\$	LocalNode	DEWE3-RM1	¹⁰ 1 2 3 4 5	6	7 8 9	10 11	12 1	.3 14 1	15 16			
	Locumode	N	Add Channel - Modal Test									
			Cepstrum/Quefrency	\$	Perform mod	lal test.						
\bigcirc			Correlation	\overleftrightarrow								
			Rosette		Group name	Modal Tes	st					
Ŧ			Percentile Measurement									
			Frequency Measurement	/								
			Constant Percentage	~								
			Bandwidth (CPB) Analysis	23								
		nalog Co	Optional Calculations									
2	8× < >		Power Group		Configure	e responses	s from s	elected ch	nannels			
	LocalN		Order Analysis				names r	matching	[0-999][XYZ][+-]	(e.g. '17Z+') v	will be used to c	reate nodes and
		E3-RM16	Swept Sine Analysis		response ass	ignments						\mathbf{i}
		ON3-1820 X+	Psophometer									$\mathbf{\lambda}$
		2/1 X-	Sound Level	\overleftrightarrow								
/	A	2/2 I 2/3	Modal Test	☆								
	A	2/3 I 2/4	Tape Sensor									
	A	2/4 I 2/5	Shock Response	\$								
	A	2/5 I 2/6 2/6	Spectrum		1						a 1	
	A	2/0 1 2/7	TBION3-1820-MULTI-8-LOB	λά.		-10	_	10	voitage	10 KHZ	Cancel	Add
			/					Zero	Scan TEDS	Disable T	-	· · ·

Fig. 7.149: Pop-up window for generating a Modal Test plugin

A Modal Test can be created in LIVE mode and configured by pressing the Add button in the lower left corner of the channel list (marked red in Fig. 7.149).

For details about the Modal Test plugin refer to the DEWETRON_Oxygen_Modal_Technical_Reference_vx.x Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Tape Sensor

\$		DEWE3-RM	16		
¥	LocalNode		Add Channel - Tape Sens	or	
:=				~	
			Psophometer	1	
			Sound Level		
E.			Modal Test		
Ŧ			Tape Sensor	☆	
			Shock Response Spectrum	$\stackrel{\frown}{\simeq}$	
			Resolver	5	
æ			Matrix Sampler		
	CAN	Analog Co	Protocols		
2	8× < >	CNT 1/1_Sub	XR/CPAD Decoder	\overleftrightarrow	
		Angle_CN CNT 1/1_Displ	OBD2	\$	
		Speed_Cl CNT 1/1_Veloc	MIL-STD-1553 Decoder		
	 т 	RION3-1820	ARINC Decoder	\overleftrightarrow	
		CNT 2/1 Sim	Data Input		
		CNT 2/1 CNT 2/1	Ethernet Receiver		
/		Frequenc CNT 2/1_Sub	SOPI Query		
		Angle_CN CNT 2/1_Displ	Modbus Receiver		
		Speed_CI CNT 2/1_Velor			Cancel Add
		CNT 2/2 Sim		\$	
<u> </u>	+	~			Reset Counter

Fig. 7.150: Pop-up window for generating a Tape Sensor plugin

A Tape Sensor can be configured by selecting the input counter channel and pressing the Add button in the lower left corner of the channel list (marked red in Fig. 7.150).

For details about the Tape Sensor plugin refer to the DEWETRON_OXYGEN_Tape_Sensor_and_Resolver_vx.x Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Shock Response Spectrum

This is an optional feature and requires a license (OXY-OPT-SRS).

The Shock Response Spectrum helps to understand how different systems react to sudden movements or impacts. It is used to calculate the maximum movement of structures and to create requirements for the design of buildings or machines that must withstand sudden loads, such as earthquakes or explosions.

An acceleration signal is applied to a series of mass-damping systems for defined frequency sections, the deflection is determined in maximum, minimum or absolute maximum and entered in a diagram for the respective frequency.

The following figure Fig. 7.151 shows the calculation process. The acceleration input can be seen at the bottom right as a half-sine, which is broken down into its spectral components and applied to single-degree-of-freedom (SDOF) oscillating elements. The response, i.e. the SDOF acceleration response, is then analyzed for the maximum in the example and plotted in the shock response spectrum above. The oscillating elements are defined solely by their damping factor, hence Single-Degree-Of-Freedom.

OXYGEN Online Help, Release 7.6

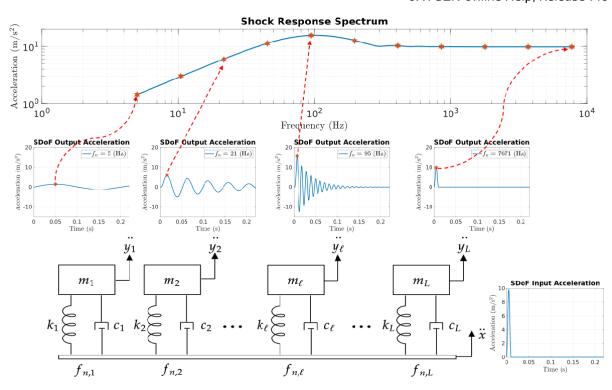


Fig. 7.151: Schematic procedure for calculating a shock response spectrum

[06.05.2025 https://de.mathworks.com/help/signal/ug/practical-introduction-to-shock-waveform-and-shock-response-

A Shock Response Spectrum (SRS) can be configured in PLAY mode (*.dmd) by selecting at least one input channel and pressing the Add button in the lower left corner of the channel list (marked red in Fig. 7.152). If the Group name is left empty, the group is named "SRS_n" by default (n=1,2,3).

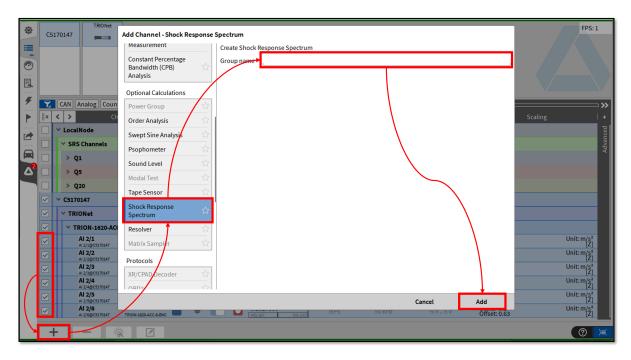


Fig. 7.152: Pop-up window for generating Shock Response Spectrum plugin

		.
FREQUENCY SETTINGS	INPUT CHANNELS (9)	OUTPUT CHANNELS
Start frequency (2) 1 Hz	Show selected channels only	Velocity output
Stop frequency 3 4200 Hz	Search	Displacement output 🚺 🗻
Frequency band (4) Twelfth Octave (1/12) 🛓	CAN Analog Counter	Select SDOF output 50;250;500 (12)
Subfrequency band width 100 Hz	∃× < > Name	Example: 31.5;100;1000
CALCULATION SETTINGS	> Q20	
Damping (5) Q-Factor 🔬 1	✓ C 5170147	
Spectrum 6 Absolute maximum	TRIONet	
Input range mode LinkedCursors 🕖 🔬	TRION-1620-ACC-6-BNC	
Charthing 0	Al 2/1	
Stop time 8 0.05 s.	Al 2/2	
	Al 2/3	
	Al 2/4	
	Al 2/5	
	Al 2/6	

Fig. 7.153: Setup of Shock Response Spectrum plugin with calculation setting

In- dex	Name	Description
1	SRS channel group name, by default SRS_n (n=1,2,3)	Set the name of the shock response spectrum channel group, which always includes the acceleration shock response.
2	Start frequency	Define the starting frequency for the shock response spectrum calcula- tion. Valid values are (0.01 Hz up to the stop frequency)
3	Stop frequency	Define the end frequency of the shock response calculation. With the toggle automatically half the sample rate as stop frequency is set. Valid values are (Start frequency up to half the sample rate)
4	Frequency band	Select the frequency band in which the SRS is calculated. If "Linear" is selected, the subfrequency band width text field below is enabled. For octave bands the octave, 1/3 octave and 1/12 octave band are available.
5	Damping	Define the damping via Q-factor or damping ratio by choosing the respec- tive dropdown option and value.
6	Spectrum	Select either one spectrum of the single degree of freedom (SDOF) ele- ments, Absolute maximum, Maximum or Minimum.
7	Input range mode	Define the time frame selection method. In case "Manual" is selected, the Start time and Stop time in point (8) are used for calculation.
8	Start/Stop time	In case the input range mode is set to "Manual" the time frame for SRS calculation is done for the samples between start and stop time.
9	Input channels	List view of channels for whom the SRS is calculated. These channels can be changed anytime, but their sample rate must be equal. Expected input channels are acceleration channels in m/s2.
10	Velocity output	Additional to the SRS of acceleration, the time integral of the acceleration, the velocity can be enabled.
11	Displacement output	Additional to the SRS of acceleration, the second time integral of the ac- celeration, the displacement can be enabled.
12	Select SDOF out- put	Define for which frequencies the SDOF acceleration elements should be added to the SRS group. If the input frequency is not the center frequency of the SDOF element, the closest element is chosen.

Table 7.33: SRS channel setup parameters

To link AB-cursor as the timeframe for the SRS calculation of any SRS group, enable AB-cursor and click on the button to the right to the AB-cursor checkbox, select the SRS groups that should be linked to the cursor and click Ok. Moving the cursor now changes the timeframe for which the SRS is calculated.

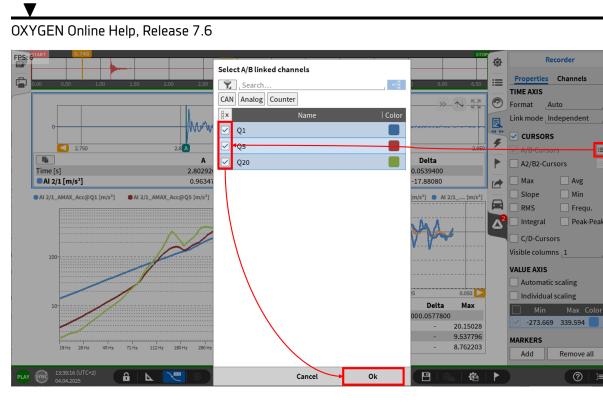


Fig. 7.154: Link AB-cursor as timeframe for SRS calculation

The SRS channels (acceleration, velocity, and displacement) are 1D arrays. For example, e.g. "Al 2/1_AMAX_Acc" has one acceleration per bin/frequency and can be displayed in an Array chart. The array chart can be copied and pasted for further analysis. The extracted SDOF channels are the acceleration-time response of the damping elements for the selected frequencies and can be displayed in a recorder.

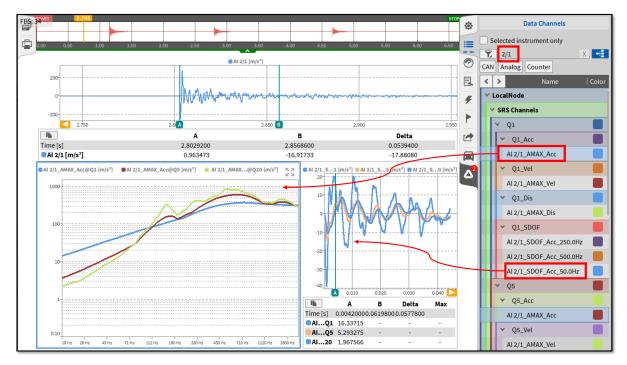


Fig. 7.155: Show SRS data in instruments

Note: Note that to update the time interval in the calculation the *Edit Mode* must be active. This is done in the channel list with the *Edit already stored channels* button.

Matrix Sampler

This is an optional feature and requires a license (OPT-POWER-ADV).

The matrix sampler is a feature, which is included in the advanced Power calculation. This feature displays the relation between two channels and an input channel in form of a color-coded matrix which is displayed in the Intensity Diagram instrument.

Creation of a Matrix Sampler Channel

There are two ways to create a matrix sampler channel:

1. Select at least one channel which should be used as reference channel (X, Y and input channel Z) in this order (channels can also be changed afterwards). Click on the + button in the lower left corner, select *Matrix Sampler* in the list and click on the *Add* button (see Fig. 7.156).

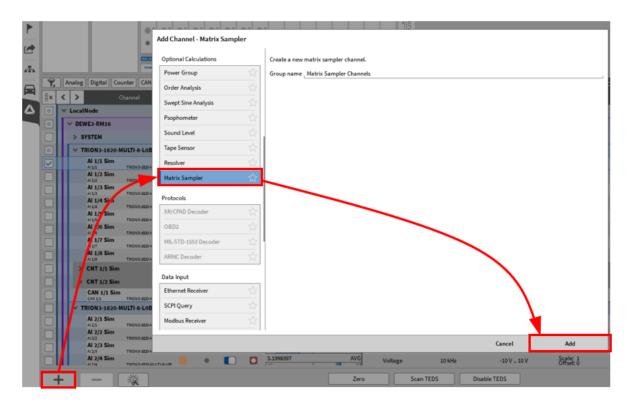


Fig. 7.156: Creation of a Matrix Sampler channel from channels in the channel list

2. The other possibility to create a matrix sampler channel in form of an efficiency map is in the Power Group settings. For a detailed explanation on how to create a Power Group see *Power Group* or refer to the *Power Technical Reference Rx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Open the Power Group settings and go to *Efficiency* in the advanced settings. By simply clicking on the *Add efficiency map* button (see Fig. 7.157), a matrix sampler channel will be created with the according channels (speed, torque, and efficiency) to display the respective efficiency map of the Power Group.

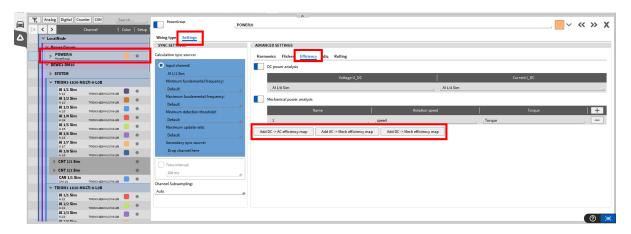


Fig. 7.157: Creation of a Matrix Sampler channel as an efficiency map of an according Power Group

After creating a matrix sampler channel by either one of these ways, a new section appears in the channel list seen in Fig. 7.158. For each matrix sampler one new channel will be created.

-	- PowerGroup		 _
	Matrix Sampler Channels		
]	Matrix_Sampler	٥	0
7			

Fig. 7.158: New section for Matrix Sampler channels in the channel list

Matrix Sampler Channel Settings

Some of the channel settings of the matrix sampler channel in this section will be explained by the example of an efficiency map. However, the settings or channels are not bound to a unit of a channel and can be used with any measured channel. An overview of the channel settings can be seen in Fig. 7.159. To enter the channel settings, click on the gear icon of the channel in the channel list (see Fig. 7.158).

The following section will explain all the settings, respectively.

OXYGEN Online Help, Release 7.6 Mat_Sam Matrix_Sampler ~ « » X MAP SETTINGS REFERENCE CHANNELS X (e.g. speed) __n_mech_0@POWER/0 ≔ := Y (e.g. torque) ____M_mech_0@POWER/0 Input Channel Z (e.g. efficiency) Eff_mech_0@POWER/0 := Averaging 0.1 TRIGGER SETTINGS ol cizo: 931 (4 Select a Trigger source for inserting a new point into the map. 100 Nm Max Channel Al 1/3 Sim := Level 20 Rearm 0 Steady State Detection (X and Y) 5 Nm Stepsize (19 steps) Threshold 20 Time Delay Trigger _0 Take Sample Disarm Trigger (Status: enabled) 500 rpm _ 200 rpm **10000** Min Stepsize Max (49 steps)

Fig. 7.159: Channel settings of a Matrix Sampler channel

Fig. 7.160 shows a detailed overview of the available channel settings of a matrix sampler channel.

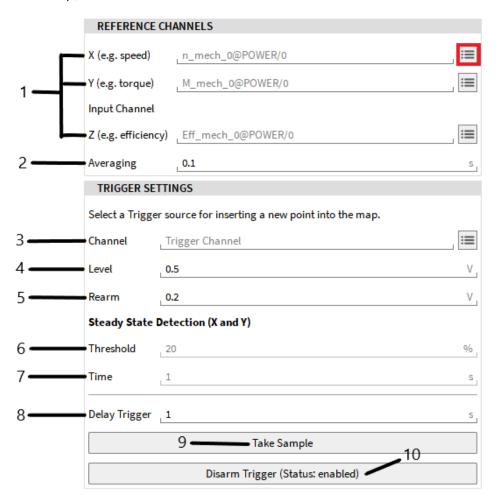


Fig. 7.160: Detailed view of the setting of a Matrix Sampler channel

No.	Function	Description
1	<i>X, Y, Z reference channels</i> selection	The reference channels for X, Y and Z can be selected here. Z acts as the input channel, which will be dis- played. Channels can also be assigned via drag'n'drop or by clicking on the channel list button marked in red in Fig. 7.160
2	Averaging	The time window to calculate the average of input channel Z
3	Trigger Channel	Selection of a trigger channel; this channel is used as a trigger to take a sample for the matrix
4	Trigger Level	Defines the level upon which the trigger is initiated
5	Rearm	Defines the rearm level, upon which the trigger will be reactivated
6	Threshold	Defines the range within the X and Y signal must stay in order to arm the trigger
7	Time	Defines the time of the X and Y signal to stay within the defined threshold range to arm the trigger
8	Delay Trigger	Defines the time delay, after which a sample will be put into the matrix after the trigger is activated
9	Take Sample	Button to manually take a sample to put in the matrix
10	Disarm/Arm Trigger	Trigger settings will be disarmed/armed; if disarmed matrix will not be updated anymore

Table 7.34: Detailed view of the setting of a Matrix Sampler chan-

nel

Note: To quickly navigate through long channel lists, use the shortcut CTRL + PAGE UP / PAGE DOWN. This function works both in full-screen view and in the compact side panel view of the channel list.

As explained in the section before, the channels can either be chosen in the right order before creating the matrix sampler channel, but they can also be changed or assigned via drag'n'drop or the channel list button afterwards.

The channels for an efficiency map are assigned properly when creating an efficiency map out of the Power Group settings. For an efficiency map the speed is used as the reference channel for the X-axis, torque for the Y-axis and the mechanical efficiency for the Z-axis as input channel.

For the trigger channel a signal can be used from a testbed environment to define, when a sample should be put into the matrix. In the example shown in Fig. 7.160 it can be seen, that a sample will be taken whenever the channel *Trigger Channel* rises above a defined level of 0.5 V. The trigger will be activated again, once the Trigger Channel drops below 0.2 V, which is defined as the rearm level.

Note: For the trigger settings, either a channel can be selected as trigger or the Steady State Detection (X and Y) can be used. If a channel is selected as trigger channel, the Steady State Detection is disabled. To use the Steady State Detection no channel can be selected as trigger channel or must be deleted. The conditions threshold and time for the Steady State Detection have to be fulfilled by the X and the Y channel in order to arm the trigger.

The *Disarm/Arm Trigger* button is very useful if a specific measurement point needs to be repeated. In order not to overwrite the whole matrix, the trigger can be disarmed. Therefore, the matrix will not be updated for each trigger, and samples are not saved. Whenever the measurement point is reached, a sample can manually be put in the matrix by clicking the *Take Sample* button.

Fig. 7.161 shows the exemplary resulting output matrix in the channel settings. For each the Y- and the X-axis the minimum, maximum and step size can be defined in the corresponding channel unit. When entering the step size, the resulting steps are displayed below.

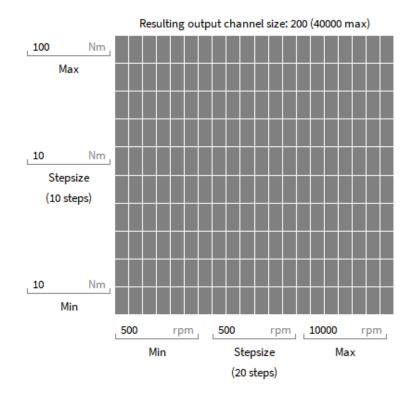


Fig. 7.161: Detailed view of the map setting of a Matrix Sampler channel

To display this efficiency map on the measurement screen simply drag and drop the matrix sampler channel onto the measurement screen. Otherwise use the intensity diagram instrument and select the channel accordingly.

For more information about the instrument refer to Intensity Diagram.

7.4.5 Protocols

MIL-STD-1553 Decoder

For details about the MIL-STD-1553 Decoder plugin refer to the MIL-STD-1553 Decoder manual which is available on the DEWETRON CCC portal.

ARINC Decoder

For details about the ARINC Decoder plugin refer to the ARINC Decoder manual which is available on the DEWETRON CCC portal.

7.4.6 Data input

OXYGEN Ethernet Receiver

This is an optional feature and requires a license.

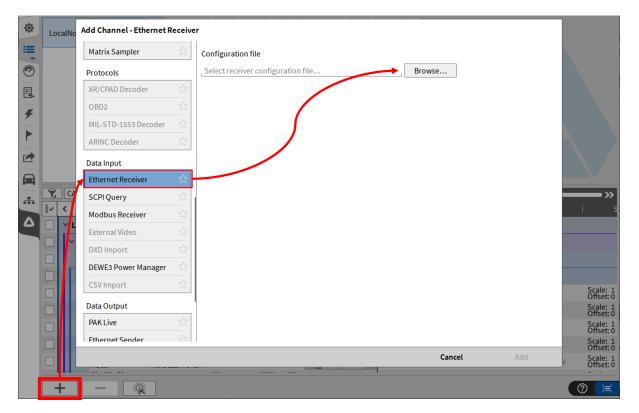


Fig. 7.162: Pop-up window for acquiring an Ethernet Receiver Data stream

An Ethernet Receiver data stream can be acquired and configured by pressing the *Add* button in the lower left corner of the Data Channels menu (marked red in Fig. 7.162).

For details about the Ethernet Receiver plugin refer to the *OXYGEN Ethernet Receiver XML Configuration Vx.x* Manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

Modbus Receiver

For details about the Modbus receiver plugin refer to the OXYGEN Modbus TCP manual which is available on the DEWETRON CCC portal.

Loading external video data

r				_			
1		✓ LocalNode	Add Channel - External Vide				
2		V CPB Chan	rept output		Add an external video file to the measurement,		
		> CP8_1	Resolver	☆			
		V TRIONet			Video FileC/Di73/Marketing/Mystery-Noise_V1.mp4	Browse	
Δ		✓ TRIONet	Mabrix Sampler	☆	The video framerate may not be correct in the file meta data (especially for high speed video).		
		V TRION-3	24 Protocols		Therefore the actual framerate can be overwritten here.		
		× Analo	ANY CITIO DECODER	- <u>\$</u> 2	V Override framerate		
		Mic	0802	☆	Framerate 150 fps,		State 8
	ш			☆			State à
			ARINC Decoder	合			
			Data Input				
			Ethernet Receiver	\$			
			SCPI Query	\$			
			Modbus Receiver	\$			
			External Video	습			
			DEWE3 Power Manager	☆			
			CSV Import	- <u>\$</u> 2			
			Unlicensed				
			PNK Live	â			
			Data Sources				
			-		Cancel	Add	
	-	+ –					

Fig. 7.163: Pop-up window for loading an external video

OXYGEN's External video () option provides the possibility to:

- Load an video file that was recorded with a 3rd party software in PLAY mode during analysis
- Manually synchronize the video to the measurement data
- Analyze both video and sensor data synchronized in OXYGEN

This feature was mainly developed to synchronize video data recorded with highspeed cameras to the sensor data but it can be used to load a video file from any camera into OXYGEN. The focus of the following section is on high speed video data.

Benefits:

- Load videos from any camera into OXYGEN for analysis
- Supported formats:
 - AVI (uncompressed)
 - MKV (VP8 and h264)
 - MP4 (h264)

- No file size increment as only path to video file is stored to the .dmd-file
- Support of various recording and trigger scenarios (see Possible Recording scenarios)
- Adjustable playback speed (see Reviewing a Data File (PLAY mode))
- Quick and easy reporting by exporting measurement screen to video (see *Saving the screen as video*)

Possible Recording scenarios

The section describes different scenarios to initiate the recording start of the DAQ system and the camera and lists certain advantages or disadvantages of the different methods.

Recording start of DAQ system and camera triggered by external signal

Fig. 7.164: Recording start of DAQ system and camera triggered by external signal

An external signal / device is used to trigger the recording start of DAQ system and camera. The signal is normally a TTL signal with a rising edge to initiate the recording start.

Modern highspeed cameras provide trigger signal input. The DAQ system requires a digital signal input to acquire the signal and trigger the recording state. Analog inputs could be used as well.

Advantages:

- Parallel recording start of camera and DAQ system without any latencies
- Easy synchronization of sensor data and video data
- No manual recording start on any device required

Disadvantage:

• Separate hardware required for generating the trigger signal

Recording start of DAQ system triggered by camera

Fig. 7.165: Recording start of DAQ system triggered by camera

The camera generates a TTL signal with rising edge at recording start which is forwarded to the DAQ system via the Trigger output of the camera. Modern highspeed cameras provide a trigger signal for triggering the recording state of 3rd party hardware. The DAQ system requires a digital signal input for acquiring the signal and triggering the recording state. Analog inputs could be used as well.

Advantages:

- Parallel recording start of camera and DAQ system without any latencies
- Easy synchronization of sensor data and video data
- No separate hardware required for generating the trigger signal

Disadvantage:

• Recording must be started manually for the camera

Recording start of camera triggered by DAQ system

Fig. 7.166: Recording start of camera triggered by DAQ system

The DAQ system generates a TTL signal with Rising edge at recording start which is forwarded to the camera via an digital output of the DAQ system. Modern highspeed cameras provide a trigger signal input.

The operating system of the DAQ system will cause a delay between the DAQ system's recording start and the instant of time the digital output is physically set to high which results in the recording start of the camera. This delay can be measured by recording the Digital Out channel. In real-life, a delay in the

msec-range between DAQ system recording start and camera recording start will occur which can be compensated while loading the video into OXYGEN for post processing.

Advantages:

- No separate hardware required for generating the trigger signal
- Recording start of the DAQ system could be triggered

Disadvantages:

- Deterministic latency between recording start of camera and DAQ system caused by the operating system
- Latency needs to be compensated while loading and post processing the video

Manual Recording start of DAQ system and camera

Manual Rec start

Manual Rec start

Fig. 7.167: Manual Recording start of DAQ system and camera

Recording is started manually both on the DAQ system and the camera.

Advantages

- No separate hardware required for generating the trigger signal
- No wiring between camera and DAQ system required

Disadvantages

- Stochastic latency between recording start of camera and DAQ system caused by the operating system
- Latency needs to be determined empirically and compensated while loading and post processing the video

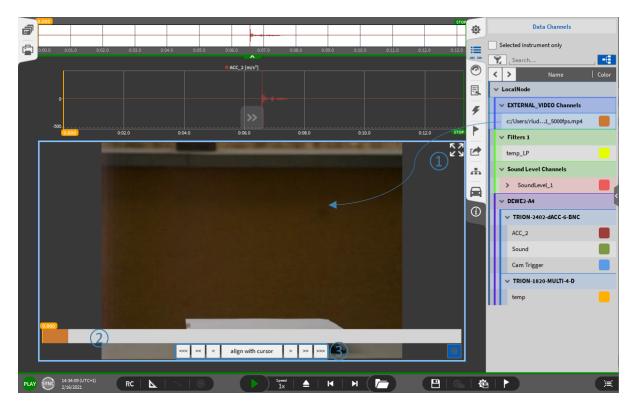
Loading the external video into OXYGEN

1	in			_	
1	H	V LocalNode	Add Channel - External Vid	e0	
and the second second	H	V CPS Chang	respiratoriale	1-1	Add an external video file to the measurement.
		> CPB_1	Resolver	- 12	Video File _ c):0403/Marketing/MysteryNoise,VLmp4
	H	V TRONH	Matrix Sampler	1	
	H	V TRION 3	Protocols		The video framerate may not be correct in the file meta data (expecially for high speed video). Therefore the actual framerate cap be overwritten here.
	F	V Analog		1	Cveride framerate
					Framerate_130 fps_
	ň				
		- 10	MIL-STD-2353 Decoder	- 12	
			ARINC Decoder	- 12	
			Data Input		
			Ethernet Receiver	- <u>\$</u>	
			SCPI Query		
			Modbus Receiver		
			External Video	<u></u>	
			DEWE3 Power Manager	一会	
			CSV Import		
			Unicensed		
			PUK Live	8	
			Data Sources		
		$1 \sim$			4
					Cancel Add
	-	<u> </u>			
	-	+ -	\$ C		

Fig. 7.168: Procedure to load an external video

To load an external video proceed the following steps:

- Go to the Channel List, press the + Button and select *External Video* (see (1) in Fig. 7.168)
- Click on *Browse…* to select the video file (see 2) in Fig. 7.168)
- Enter the native recording frame rate of the video (see 3 in Fig. 7.168)
- Press *Add* to create a new video channel (see ④ in Fig. 7.168)


Synchronization of external videos

7		Analog Digital Counter CAN Sea	rch	EN_HS_Video_Sync/videofile	Tasse_Weiß_1_5000fps.mp4
×	<	Channel	∜ Color		Tasse_weis_1_souoips.mp4
	~	/ LocalNode		VIDEO SETTINGS	PREVIEW
		V EXTERNAL_VIDEO Channels		Video File ideofiles/Tasse_Weiß_1_5000fps.mp4 Browse	
		c:/Users/rludwig/DeWeiß_1_5000f	fps.mp4 🛛 📒 🔯	Frame rate 5000 (1) fps	
		> Filters 1			
		> Sound Level Channels		Start Offset _ 0	

Fig. 7.169: Compensating a deterministic delay between video and sensor data

If the latency between video and sensor data is known it can be compensated by entering the delay in *Start Offset* in the video's channel setup (see (1) in Fig. 7.169).

Positive offset denotes that OXYGEN data recording was started first and video data recording second.

Negative offset denotes that video data recording was started first and OXYGEN data recording second.

Fig. 7.170: Manual delay compensation between video and sensor data

If the latency between video and sensor data in unknown, the video timeline can be aligned to sensor data's timeline by using the video instrument (see *Video instrument* for details).

1. Go to the measurement screen and drop the external video channel to the measurement screen (see (1) in Fig. 7.170). This will create a video instrument including the video.

The timebar shows the actual position of the video within the OXYGEN data file (see (2) in Fig. 7.170)

2. The buttons (see ③ in Fig. 7.170) can be used to change the position of the video within the data file

<<< << < align with cursor >>> >>

- <<< Move the video +1 frame
- << Move the video +10 frames
- < Move the video +100 frames
- Align with cursor: Move video start to actual cursor position
- > Move the video -1 frame
- >> Move the video -10 frames
- >>> Move the video -100 frames

In general, the following workflow to manually align sensor and video data is recommended:

OXYGEN Online Help, Release 7.6

Fig. 7.171: Alignment of sensor and video data

- 1. Use the Recorder to move the orange cursor to the reference event for data synchronization (see <a>(1) in Fig. 7.171)
- 2. Press *align with cursor* to move the video start to the orange cursor position for a rough time adjustment (see (2) in Fig. 7.171)
- 3. For fine time adjustments, use the <<<, <<, < & >, >>, >>> buttons to align the timeline (see ③ in Fig. 7.171)
- 4. When finished, the timebar can be hidden (see (4) in Fig. 7.171)
- 5. The absolute time offset can also be seen in the video's channel setup (see (5) in Fig. 7.171)
- 6. The settings can be saved to the data file (see \bigcirc in Fig. 7.171)

Note: Only the file path to the video is stored to the OXYGEN data file but not the video itself.

Replaying the data file

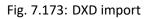
Details can be found in *Reviewing a Data File (PLAY mode)*.

Saving the measurement screen to video

Details can be found in *Saving the screen as video*.

UDP Receiver

This is an optional feature and requires a license.


An UDP Receiver data stream can be acquired and configured by pressing the Add button in the lower left corner of the Data Channels menu (marked red in Fig. 7.172).

\$	Lo	calN	ode		ewe3-A4														
:=					Add Channel - UDP Receiver														
					Example Plugin: Simple message file replay		SETTINGS	5											
					Example Plugin: Simple file replay	☆	UDP buffer			1048576									
¥	7]0	AN Ana	loį	Example Plugin: Simple async file replay	☆	Reference Model freq	design frequ	uency	1000000	_								« »
	X	<	>		Dynamometer	☆	Host	Juency		192.168.140.100									Mode
-	H		A	1/	DEWE3 Power Manager	\$	Port			12345	_							AVG	Voltage
	H	н		1/	CSV Import	52	Divider f_b	ь		.1								AVG	-
	H			1/		~	Bandwidth	h:		33.53 Mbit/s								AVG	-
	H		AD AD	1/	Data Output		Select	tall										AVG	-
÷	H		A	1/5	PAK Live		Cha	annel 0 Div	ider	0	Source	Model	4	Туре	SInt32		.41	AVG	
	H	н	AD AD	1/	Ethernet Sender		Cha	annel 1 Div	ider	0	Source	Model		Туре	SInt32		4	AVG	-
	H		A		~ · · · · ·		Cha	annel 2 Div	ider	0	Source	Model		Туре	SInt32		.41	AVG	4
	H	н	> CI		Simple Examples		-	annel 3 Div		0	Source	Model		Туре	SInt32		4	20	Totage
	H				Example Plugin: Property Callback	☆		annel 4 Div		0	Source	Model	A		SInt32		.A1		
			C/			_		annel 5 Div		0	Source	Model Model		Туре	SInt32 SInt32		4		High Spee
				-	Data Sources	_	_	annel 6 Div annel 7 Div		0	Source	Model	A	Type Type	Sint32		A1		nign spee
	H	н		2	UDP Receiver	☆		annel 8 Div		.0	Source	Model			SInt32		4	AVG	Vallage
	\square		AL	2/1	Triggered Replay	$\dot{\mathbf{x}}$	_	annel 9 Div		. 0	Source	Model	A	Туре	SInt32		1001	AVG	voitage
	H	н	A1		MQTT Plugin: Simply add	~	Cha	annel 10 Di	vider	. 0		Model			SInt32		4	AVG	voitage
			AL	2/3	MOTT to Ovurren	M												AVG	voitage
		1	A	24									Cance	el 🛛		Add		20	Voltage
		/		чТ		Ť													
			> ci	11 2/	2 Sim	۲													
	-	⊦		-	- Alexandre														() I

Fig. 7.172: UDP Receiver – data source

DXD import

	Kanal hinzufügen - DXD Import									
	MIL-STD-1553 Decoder									
	ARINC Decoder		Brows	e	c:/Users/Tklug/D	esktop/Slalom_30m_ES	P_on_2009_01_01_0501	01.d7d		
	Dateneingang		2024-07-29	10:25:52.61	13800000			_		
	SCPI Query		Offset Type	e Rela	tive		~	<u> </u>		5
	Modbus Receiver				tive		(3)	amplerate	Range	
	External Video				e 1st sample to _rear_axle_right_x		5	2000.00 Hz	00	
	DXD Import	☆	(2)							
	DEWE3 Power Manager	\overleftrightarrow		acc	_rear_axle_right_y		g	2000.00 Hz	00	
	CSV Import			acc	_rear_axle_right_z		g	2000.00 Hz	00	
<u>}</u> c	Datenausgabe									
/ <	PAK Live			acc_	front_axle_right_x		g	2000.00 Hz	00	Skalier
	Ethernet Sender	2		acc_	_front_axle_right_y		g	2000.00 Hz	00	
		\sim								Skalierur
1.	Dateneingabe	A.		acc_	front_axle_right_z		g	2000.00 Hz	00	Skalierur Offset:
j II	Ethernet Receiver	\overleftrightarrow			acc_COG_x		g	2000.00 Hz	00	
	Data Sources									
	UDP Receiver				acc_COG_y		g	2000.00 Hz	00	
	MQTT Plugin: Simply add MQTT to Oxygen.	\$			acc_COG_z		g	2000.00 Hz	00	
	Example Plugin: Simple file replay	\$								
		\sim		acc_b	oddy_mount_f2r_1_;	ĸ	g	2000.00 Hz	00	
			4							
	010/003 500			0		INAIN	DIO	Abbrechen 10 kHz	Hinzufügen	
5	DI 0/DO9 DI 0/DO10 Sim DI 0/DO10		STEM	•		NaN 0	DIO		01	
5	DI0/D011 Cim		-		-	MaM				

In OXYGEN Viewer (PLAY mode) it is possible to import *.dxd or *.d7d (2) data as a channel. Data can be sifted by relative time and absolute time (3). Both synchronous and asynchonous time domain channels are supported.

CSV import

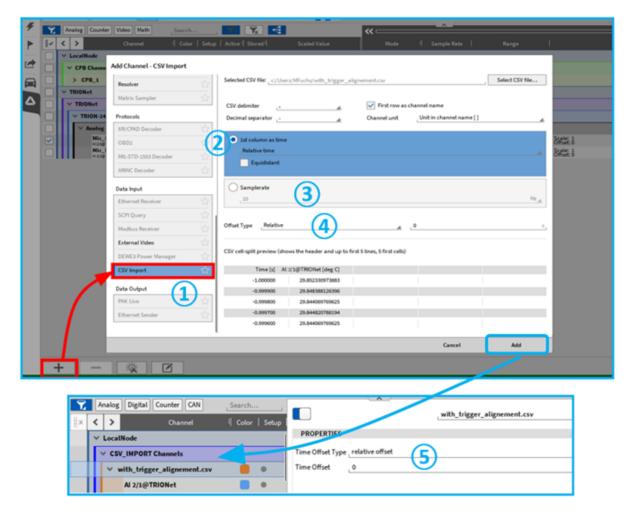


Fig. 7.174: CSV import

In OXYGEN Viewer it is possible to import CSV data as a channel. This is only available in PLAY mode (see (1) in Fig. 7.174). The first column can be interpreted as relative or absolute time (see (2) in Fig. 7.174). In case no time is included a synchronous sample rate can be defined (see (3) in Fig. 7.174). An optional time offset can be defined before adding the channel (see (4) in Fig. 7.174) or subsequently in the properties (see (5) in Fig. 7.174). The imported channel can be found in the group CSV_IMPORT Channels in the channel list.

7.5 Offline math

The topology *Offline Math* deems calculations that shall be performed after the measurement is finished within a data file (.dmd). The following Offline Math features are supported. The features will be extended within the proximate OXYGEN releases.

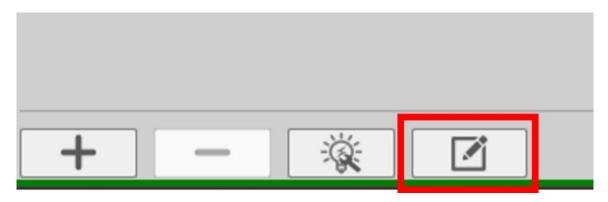


Fig. 7.175: Editing of already stored channels

- The "Edit already stored channels" button (see Fig. 7.175) software channels, such as formulas, statistics or power groups, which were calculated during recording, can also be modified offline. Dependencies of these channels are updated automatically. Additionally, it is also possible to change the name as well as the unit of hardware channels offline.
- Offline Math is not applicable for the scaling of an analog input channel.
- Channels can be added afterwards in the same manner as explained in *Mathematical channels* by clicking on the + button (see Fig. 7.48) at the lower left side of the Channel List.
- Channels created or edited within one open session can be deleted by clicking on the *Delete Math Channel* button (see Table 7.1). After re-opening a data file, the previously created channels cannot be deleted any more.
- Formulas, Filters, Statistics, FFT channels, the Psophometer plugin, the Swept Sine Analysis plugin, the Rosette determination, the sound level option and the CPB analysis can be used offline as well.
- Channel dependencies are respected during Offline Math calculations. This denotes that it is possible to create a Filter channel and a Statistics Channel that is applied on this certain Filter channel within one session. If the Filter channel is edited again, the Statistics channel will automatically be recalculated, too.
- Channels that have been created offline can be recognized on the Green Record button in the Channel List (see Fig. 7.176):

Active
Stored
Char

Math Channels

Sine 1 Hz

Statistics 1

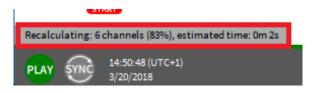
Statistics 1

Sine 1 Hz_RMS

OXYGEN Online Help, Release 7.6

Fig. 7.176: Recognition of offline created channels

• Created channels and any changes can be stored to the data file by pressing the *Store data* button (see Fig. 7.177 or (13) in Fig. 3.5):


Fig. 7.177: Store data button

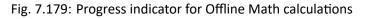

• Created channels and any changes can be exported to a setup file by pressing the *Save setup file* button (see Fig. 7.178 or (15) in Fig. 3.5):

Fig. 7.178: Save setup file button

• A *Progress indicator* will inform about the actual calculation progress (see Fig. 7.179) and contains information about the number of calculated channels, the calculation progress in percent and the remaining calculation time:

• A data file recorded with OXYGEN 2.x can be opened with OXYGEN 3.x to apply Offline Math. After storing changes to the data file, it cannot be opened with OXYGEN 2.x again but only with OXYGEN 3.x.

• Be aware that an Offline Statistics channel will differ from an Online Statistics channel, i.e. at the beginning of the file or in case of Event based waveform recording (see *Triggered Events*). In the example displayed in Fig. 7.180, the green channel is an online calculated Statistics channel applied on the yellow analog channel and the red channel is an offline calculated Statistics channel applied on the yellow analog channel with identical channel settings. The deviation of the green and the red channel is due to the availability of the full analog data during online calculation. During the offline calculation, only the event based recorded analog data is available.

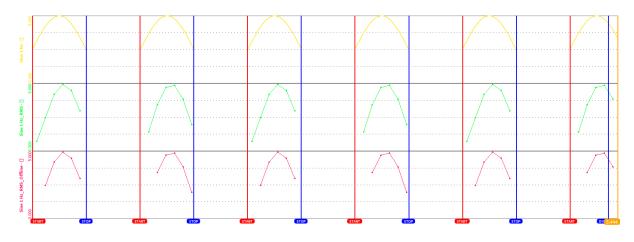


Fig. 7.180: Deviation of Offline and Online Statistics channels in case of Event based Waveform recording

• Be aware that an Offline Filter channel will differ from an Online Filter channel, i.e. at the beginning of the file or in case of Event based waveform recording (see *Triggered Events*). In the example displayed in Fig. 7.181, the green channel is an online calculated Integrator applied on the yellow analog channel and the red channel is an offline calculated integrator applied on the yellow analog channel with identical channel settings. The deviation of the green and the red channel happens, because the offline calculated integrator will oscillate at the beginning of each new event, but the online calculated integrator not, because the analog data is always available during online calculation.

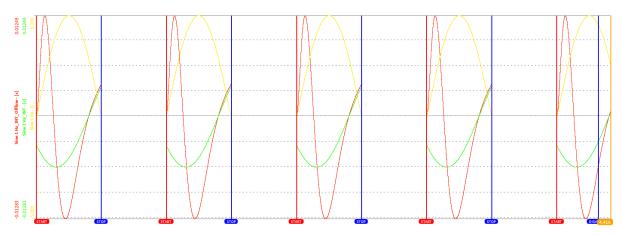
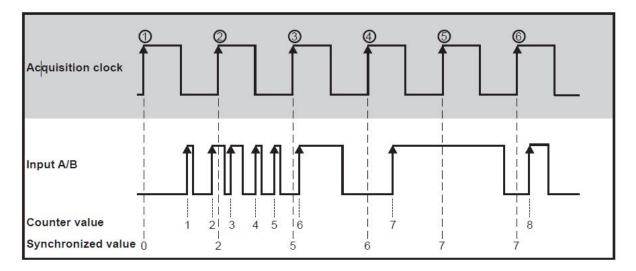


Fig. 7.181: Deviation of Offline and Online Filter channels in case of Event based Waveform recording

7.6 Counter Channels in OXYGEN

OXYGEN supports three different Counter modes: Event Counting, Frequency determination and Encoder Mode (incl. X1, X2, X4 and A-up / B-down) counting.


The following extract from TRION module Technical Reference Manual provides an explanation of the different counting modes. For detailed information, refer to the TRION module Technical Reference Manual.

7.6.1 Counter Modes

Event counting

In Event Counting, the counter counts the number of pulses that occur on input A/B. At every acquisition clock, the counter value is read without disturbing the counting process.

Fig. 7.182 shows an example of event counting where the counter counts eight events on Input A or B. Synchronized Value is the value read by the TRION-CNT module at Acquisition Clock (encircled numbers in the figure, e.g. 1, 2).

If counting at falling edges is necessary, the input signal must be inverted. This can be done directly in the software by selecting inverted input.

Frequency measurement

In general, it is possible to take the inverse of a period measurement to get the frequency of the input signal. If the period time measurement is done, an inaccuracy of counted internal time base cycles of ± 1 cycle appears, because the counted cycles of the internal time base depend on the phase of the input signal with respect to the internal time base. For long period times, and therewith low frequencies, the measurement error is negligible. At high frequencies, and therewith short period times, few cycles are counted. In this case the error of ± 1 cycle becomes significant.

Input Frequency	Number of internal time base cycles	Measurement error of -1 cycle	Measurement error of +1 cycle	Calculated frequency with error of -1 cycle	Calculated frequency with error of +1 cycle
40 kHz	2000	1999	2001	39,98 kHz	40,02 kHz
10 MHz	8	7	9	8,75 MHz	11,25 MHz

Fig. 7.183: Accuracy at period time measurement

For higher precision result, a combination of main and sub counter is used internally for getting higher precision at the frequency measurement. The main counter is running on event counting (or encoder mode). The sub counter measures the time between. The sub counter measures exactly the time of the input event with a resolution of 12.5 ns relative to the acquisition clock. At every rising edge on Input A the counter value of the sub counter is stored in a register. At every Acquisition Clock (1, 2, ...,6) the values of both counters are read out.

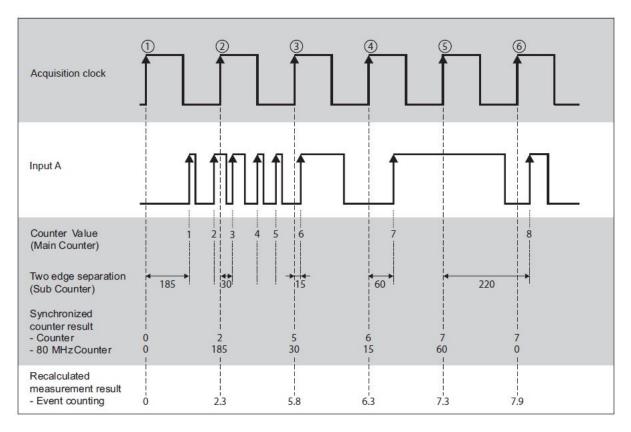


Fig. 7.184: Frequency measurement

Pulse width measurement

In Pulse Width Measurement the counter uses the internal time base to measure the pulse width of the signal present on Input A. The counter counts the rising edges of the internal time base after a rising edge occurs on Input A. At the falling edge on Input A the counter value is stored in a register and the counter is set to zero. With the next rising edge on Input A the counter starts counting again. At every Acquisition Clock (1, 2, ..., 6) the register value is read out.

Fig. 7.185 shows a pulse width measurement.

Note: For measuring the low time of the signal, the input signal has to be inverted on the TRION-CNT

module.

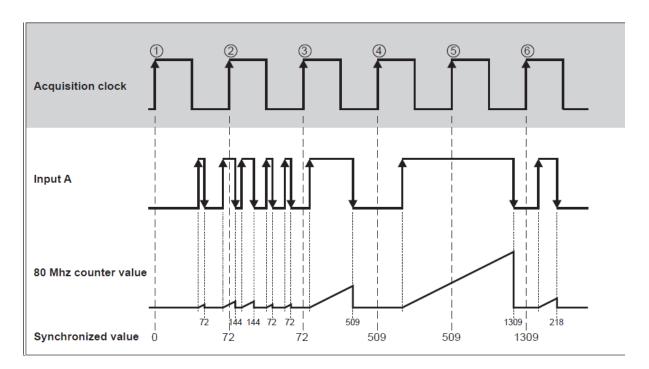


Fig. 7.185: Pulse width measurement

Encoder

Motion encoders have usually three channels: channel A, B and Z. Channel A and channel B are providing the square signals for the counter and have a phase shift of 90°. With this phase shift, the decoder can recognize the rotation direction of the motion encoder. The third channel types out one pulse at a certain position at each revolution. This pulse is used to set the counter to zero. The amount of counts per cycle at a given motion encoder depends on the type of decoding: X1, X2, X4. All three types are provided by the TRION-CNT module. Some motion encoders have two outputs, which are working in a different way. Either channel A or channel B providing the square signal, depending on the direction of the rotation. Also, this type is supplied by the TRION-CNT module.

In the first case X1 decoding is explained. When Input A leads Input B in a quadrature cycle, the counter increments on rising edges of Input A. When Input B leads Input A in a quadrature cycle, the counter decrements on the falling edges of Input A. At every Acquisition Clock (1, 2, ..., 9), the counter value is read out.

Fig. 7.186 shows the resulting increments and decrements for X1 encoding.

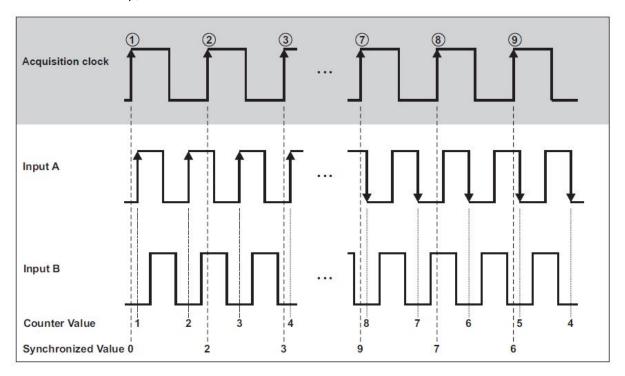


Fig. 7.186: Quadrature Encoder X1 Mode

For X2 encoding, the rising edges and the falling edges of Input A are used to increment or decrement. The counter increments if Input A leads Input B and decrements if Input B leads Input A. This is shown in Fig. 7.187.

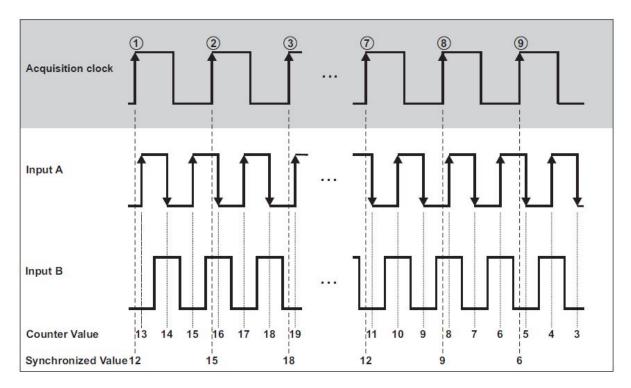


Fig. 7.187: Quadrature Encoder X2 Mode

Similarly, the counter increments or decrements on each edge of Input A and Input B for X4 decoding.

The condition for increment and decrement is the same as for X1 and X2.

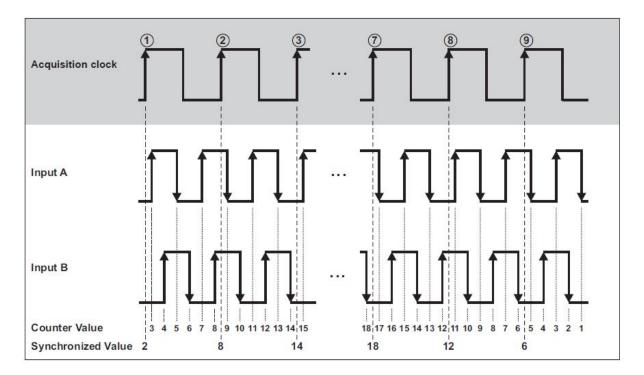
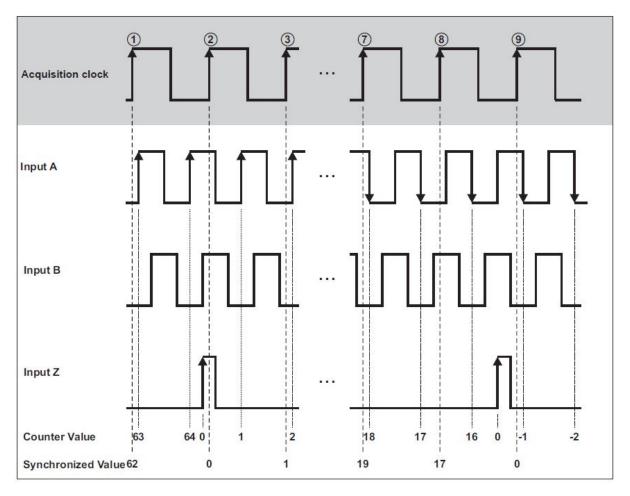
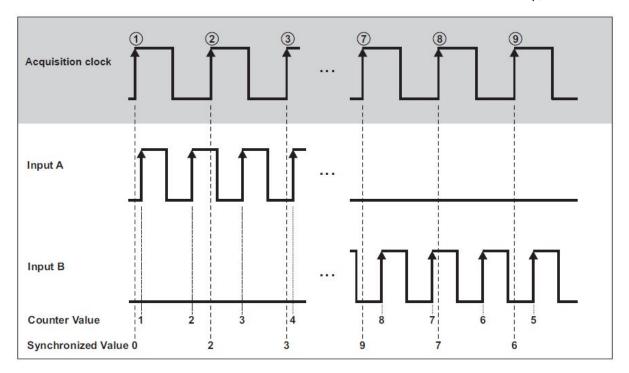


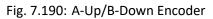
Fig. 7.188 shows the results for X4 encoding.

Fig. 7.188: Quadrature Encoder X4 Mode

The third channel Input Z, which is also referred as the index channel, causes the counter to be reloaded with zero in a specific phase of the quadrature cycle.

Fig. 7.189 shows the results for X1 encoding with input Z.


Fig. 7.189: Quadrature Encoder with channel Z

The A-Up/B-Down Encoder supports two inputs, A and B. A pulse on Input A increments the counter on its rising edges. A pulse on Input B decrements the counter on its rising edges. At every Acquisition Clock (1, 2, ..., 9), the counter value is read out.

This situation is shown in Fig. 7.190.

7.6.2 TRION Counter Overview

TRION	-CNT	-BASE	-TIMINC	-VGPS	-1620-A	C @ 402-d	A (30) -18x(- M18027/ 160)0-c
#Counter #In- puts/counter	63	23	13	13	11	21	21	13	
Isolation	\checkmark	x	x	x	\checkmark	x	\checkmark	x	
Trigger level	0 to 50 V / 12 mV steps	CMOS/T	TICMOS/T	TICMOS/T	TL70 % of input range	Progr. within input range	75 % of input range	CMOS/TTL	
Event counting	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Frequency/pulse width measure- ment	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Encoder support	\checkmark	\checkmark	\checkmark	\checkmark	x	x	x	\checkmark	
Angle determina- tion (SW)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Speed determi- nation (SW)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Sensor supply	5 and 12 V	5 and 12 V	5 and 12 V	5 and 12 V	x	x	x	5 and 12 V	

Table 7.35: TRION Counter overview

As shown in Table 7.35, Frequency measurement and Event counting can be done with every TRION

module with counter input. Encoders and CDM+Trigger sensors cannot be connected to a the TRION-1620-ACC or the TRION-2402-dACC module as they don't have several digital input channels per counter channel. Hence, angle and rpm measurements are possible with a counter channel of a TRION-1620-ACC or TRION-2402-dACC module, but no turning direction can be determined.

Note: The Trigger Level supported by the TRION-2402-dACC module differs from the software possibilities.

7.6.3 Channel List of Counter Channels

~		COUNT	ER CNT 2/1 Sim		傪			
			CNT 2/1 Sim	TRION-CNT-6-L1B	ø	1.479163e+5	AVG	Encoder
			Frequency_CNT 2/1		÷	1.000000e+6	AVG	Frequency
			Angle_CNT 2/1 Sim	TRION-CNT-6-L1B	۰	1.036439e+5	AVG	Rotation
			Speed_CNT 2/1 Sim	TRION-CNT-6-L1B	-	1.171875e+5	AVG	Velocity

Fig. 7.191: Channel List of a Counter channel

4 single sub-channels are created for each available Counter channel (*COUNTER CNT 2/1 Sim* in Fig. 7.191)in the Channel List. The counter hardware of one Counter channel (except TRION-dACC and TRION-ACC hardware) consists of two different counter logics, the *Main counter* and the *Sub counter* (see Fig. 7.192).

The first sub-channel (*CNT 2/1 Sim* in Fig. 7.191) is linked to the Main counter. If the Counter channel shall be used in the *Event Counting* or *Encoder mode* (X1, X2, X4, A-up/B-down), it must be defined in the Channel Setup of this sub-channel. The *Frequency mode* can be selected in this sub-channel as well, but this is only due to guarantee the compatibility with old setup files. The sub-channels 3 and 4 will disappear if the *Frequency mode* is selected (*Angle_CNT2/1 Sim* and *Speed_CNT 2/1 Sim* in Fig. 7.191).

The second sub-channel (*Frequency_CNT 2/1 Sim* in Fig. 7.191:) is linked to the Sub counter. This channel is used for the frequency measurement. If *Frequency mode* is selected in sub-channel one (*CNT 2/1 Sim* in Fig. 7.191), sub-channel two (*Frequency_CNT 2/1 Sim* in Fig. 7.191) is deactivated and does not display data.

The third sub-channel (Angle_*CNT 2/1 Sim* in Fig. 7.191) calculates the angle by using the data acquired from the *Main counter* and *Sub counter* logic and the fourth sub-channel (*Speed_CNT 2/1 Sim* in Fig. 7.191) calculates the speed by using the data acquired from the *Main counter* and *Sub counter* logic.

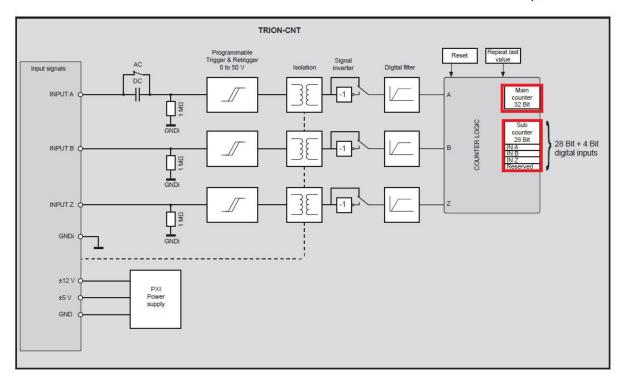
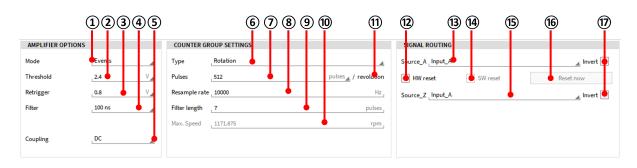


Fig. 7.192: Block diagram of one Counter channel on a TRION-CNT module

Note: The maximum bus data rate of 90 MB/s is reached if 6 channels of a TRION-CNT module are stored with 2 MHz Sample Rate.

7.6.4 Channel Setup of a Counter Channel

Each of the four sub-channels has an own Channel Setup. The Channel Setups of all 4 sub-channels is summarized in the Channel Setup of the main counter channel (*COUNTER CNT 2/1 Sim in* Fig. 7.193) and can be entered by clicking on the gear button (see Fig. 7.193). The scaling of a sub-channel can be changed in the Channel Setup of the individual sub-channel.


~		COUNT	ER CNT 2/1 Sim		儆			
			CNT 2/1 Sim	RION-CNT-6-L1B	\$	1.479163e+5	AVG	Encoder
			Frequency_CNT 2/1 S	Sim RION-CNT-6-L1B	ø	1.000000e+6	AVG	Frequency
			Angle_CNT 2/1 Sim	RION-CNT-6-L1B	\$	1.036439e+5	AVG 360	Rotation
			Speed_CNT 2/1 Sim	RION-CNT-6-L1B	¢	1.171875e+5	AVG	Velocity

In the following, the Channel Setup of a Main Counter channel for and its options for an *Event* mode and an *Encoder* mode are explained on the example of a TRION-CNT module. Due to limited hardware possibilities, the channel setup of a TRION-ACC or TRION-dACC module counter channel provides less options.

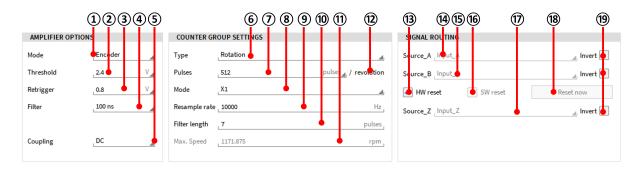
V

Channel Setup for a TRION-CNT Channel in *Event* mode

Fig. 7.194: Channel Setup for a TRION-CNT channel in *Event* mode

No.	Function	Description
Ampli	fier Options	
1	<i>Mode</i> menu	Counter mode selection: <i>Events, Frequency</i> or <i>Encoder</i>
2	Threshold level	Threshold (Trigger) Level selection (depends on the TRION hardware, see Table 7.35)
3	Retrigger level	Retrigger Level selection (depends on the TRION hardware, see Table 7.35)
4	<i>Filter</i> menu	Selection of a digital filter; for additional in- formation refer to <i>Digital Filter of a Counter</i> <i>Channel</i>
5	<i>Coupling</i> menu	Coupling (HP filter) selection (availability depends on TRION hardware)
Count	er Group Settings	
6	<i>Type</i> menu	Decoding type: <i>Rotation</i> or <i>Linear</i> decoding type
7	Pulses selection	Number of pulses transmitted by the counter per revolution, meter,
8	<i>Resample rate</i> selection	Select the Resample rate here; needed if time synchronous counter and analog data is re- quired. Enter the sample rate of the analog channel here and counter data will be time synchronous to the analog data
9	Filter length	Apply a moving average filter on speed by number of pulses. For speed signal smooth- ing without delay. Applicable in Event and En- coder mode.

Table 7.36: Menu of a Counter channel in the *Event* mode


continues on next page

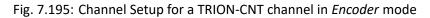

No.	Function	Description
10	Maximum speed	Maximum recommended speed calculated by sample rate (per minute) divided by pulses per revolution. <i>Max. speed [rpm] = Sample rate [Hz] x 60 / pulses per revolution</i>
11	Unit selection	Unit selection; for rotational sensors fixed to <i>revolution</i> , set to <i>meters</i> per default for linear sensors
Signal	Routing	
12	<i>HW Reset</i> button	HW reset selection; If this option is selected, a second input <i>Source_Z</i> must be selected. <i>Source_A</i> channel is reset if the edge of <i>Source_Z</i> raises from 0 to 1
13	Source_A selection	Select the input signal that shall be routed to <i>Source_A</i>
14	SW Reset button	SW Reset selection; If this option is selected, Source_A is reset after the number of pulses entered in (7) is reached
15	<i>Source_Z</i> selection	Select the input signal that shall be routed to <i>Source_Z</i> (only applicable if <i>HW Reset</i> is selected)
16	Reset now button	If this button is pressed, a manual hardware reset is forced
17	Invert channel button	Inverts the respective input channel

Table 7.36 - continued from previous page

Note: An automatic Counter Reset at Recording Start is not supported

No.	Function	Description
Ampli	fier Options	
1	<i>Mode</i> menu	Counter mode selection: <i>Events, Frequency</i> or <i>Encoder</i>
2	Threshold level	Threshold (Trigger) Level selection (depends on the TRION hardware, see Table 7.35)
3	Retrigger level	Retrigger Level selection (depends on the TRION hardware, see Table 7.35)
4	<i>Filter</i> menu	Selection of a digital filter; for additional in- formation refer to <i>Digital Filter of a Counter</i> <i>Channel</i>
5	<i>Coupling</i> menu	Coupling (HP filter) selection (availability depends on TRION hardware)
Count	er Group Settings	
6	<i>Type</i> menu	Decoding type: <i>Rotation</i> or <i>Linear</i> decoding type
7	Pulses selection	Number of pulses transmitted by the counter per revolution, meter,
8	Encoder Mode selection	Select the Encoder mode: X1, X2, X4, A-Up/B-Down
9	<i>Resample rate</i> selection	Select the Resample rate here; needed if time synchronous counter and analog data is re- quired. Enter the sample rate of the analog channel here and counter data will be time synchronous to the analog data
10	Filter length	Apply a moving average filter on speed by number of pulses. For speed signal smooth- ing without delay. Applicable in Event and En- coder mode.
11	Maximum speed	Maximum recommended speed calculated by sample rate (per minute) divided by pulses per revolution. <i>Max. speed [rpm] = Sample rate [Hz] x 60 / pulses per revolution</i>
12	Unit selection	Unit selection; for rotational sensors fixed to <i>revolution</i> , set to <i>meters</i> per default for linear sensors
Signal	Routing	
13	HW Reset button	HW reset selection; If this option is selected, a second input <i>Source_Z</i> must be selected. <i>Source_A</i> channel is reset if the edge of <i>Source_Z</i> raises from 0 to 1

Table 7.37: Menu of a Counter channel in the Encoder mode

continues on next page

		ued from previous page
No.	Function	Description
14	<i>Source_A</i> selection	Displays the signal that is routed to <i>Source_A</i> (routing can't be edited in the <i>Encoder</i> mode)
15	<i>Source_B</i> selection	Displays the signal that is routed to <i>Source_B</i> (routing can't be edited in the <i>Encoder</i> mode)
16	SW Reset button	SW Reset selection; If this option is selected, Source_A is reset after the number of pulses entered in (7) is reached
17	<i>Source_Z</i> selection	Displays the signal that is routed to <i>Source_Z</i> (only applicable if <i>HW Reset</i> is selected, rout- ing can't be edited in the <i>Encoder</i> mode)
18	Reset now button	If this button is pressed a manual hardware reset is forced
19	Invert channel button	Inverts the respective input channel

Table	7.37 -	- continued	from	previous page
-------	--------	-------------	------	---------------

Note: An automatic Counter Reset at Recording Start is not supported

7.6.5 Digital Filter of a Counter Channel

Each counter and digital input has a digital filter, which can be set to various gate times. If the gate time is set to "Off", no filter is on the input signal. The filter circuit samples the input signal on each rising edge of the internal time base. If the input signal maintains his state for at least the gate time, the new state is propagated. As an effect the signal transition is shifted by the gate time.

Fig. 7.196 demonstrates the function of the filter.

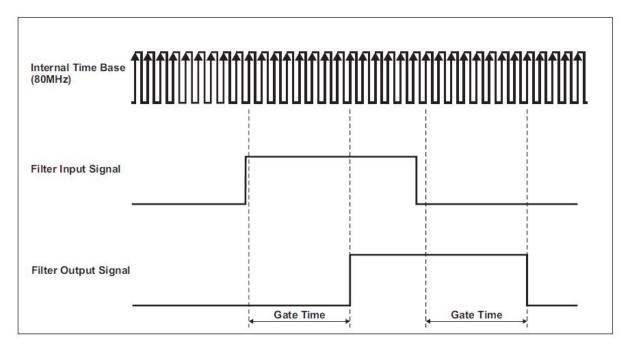


Fig. 7.196: Digital filter

The intent of the filter is to eliminate unstable states, e.g. glitches, jitter... which may appear on the input signal, as shown in Fig. 7.197.

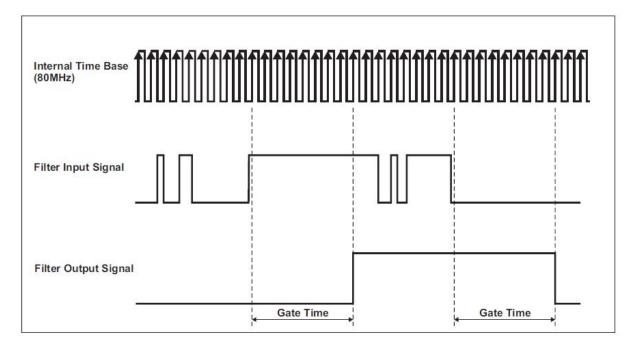


Fig. 7.197: Input signal with chatter

It can be chosen between eight filter settings: Off, 100 ns, 200 ns, 500 ns, 1 μ s, 2 μ s, 4 μ s and 5 μ s. Two examples of filter settings are described. The 100 ns filter will pass all pulse widths (high and low) that are 100 ns or longer. It will block all pulse widths that are 75 ns or shorter. The 5 μ s filter will pass all pulse widths (high and low) that are 5 μ s or longer and will block all pulse widths that are 4.975 μ s or shorter. The internal sampling clock (time base) is 80 MHz, so the period time amounts 12.5 ns. Pulse widths between gate time minus two internal time base period times may or may not pass, depending on the phase of the input signal with respect to the internal time base.

Properties of all filter settings:

Filter settings	Pulse width to pass	Pulse width to be blocked
100 ns	100 ns	75 ns
200 ns	200 ns	175 ns
500 ns	500 ns	475 ns
1 µs	1 µs	975 ns
2 µs	2µs	1.975 µs
4 µs	4 µs	3.975 µs
5 µs Off	5 µs	4.975 µs
Off	-	-

7.6.6 Supported Counter Sensors

Due to the software and TRION-hardware possibilities, OXYGEN supports three different types of counter sensors: Tacho sensors, CDM+Trigger sensors and Encoder sensors. The following table provides an overview about the possibilities and differences of the different types of sensors:

	50							
	Mount- ing	Connect	Pulses	Fre- quency	Required digital counter inputs	Measurement		
	3		y		RPM	l An- gle	Di- rec- tion	
Tacho	Easy	Analog or adj. CNT	1 kHz	0.1	1	~	х	x
CDM+ Trigger	Hard	CNT	360/720/xxx	125 kHz	2	~	√	x
Encoder coder	Hard	CNT	Up to 36000 and more	~100 kHz	3	~	√	\checkmark

Table 7.38: Characteristics of Tacho, CDM+Trigger and Encoder sensors

Mandatory channel settings for Tacho sensors

AMPLIFIER OPTIONS	COUNTER GR	OUP SETTINGS	
Mode Events	Туре	Rotation	
Threshold 2.4	Pulses	1	pulses revolution
Retrigger 0.8 V	Resample rate	10000	Hz
Filter 0.1 US			
Coupling DC			
	SIGNAL ROUT	TING	
	Source_A Inp	ut_A	📕 Invert 📃
	HW Reset	SW Reset	Reset now

Fig. 7.199: Channel settings for a Tacho sensor

- Amplifier *Mode* must be set to *Events*
- Threshold and Retrigger Level must be adjusted depending on the sensor signal
- Number of *Pulses* must be set to 1 pulse /revolution
- Sensor signal must be routed to Source_A

V

Mandatory channel settings for CDM+Trigger sensors

AMPLIFIER OPTIONS	COUNTER GROUP SETTINGS	
Mode Events	Type	4
Threshold 2.4 V	Pulses 360 pu	Ilses , revolution
Retrigger 0.8 V	Resample rate 10000	Hz
Filter 0.1 US		
Coupling DC		
	SIGNAL ROUTING	
	Source_A _Input_A	📕 Invert 📃
	✓ HW Reset SW Reset Re	eset now
	Source_Z _Input_Z	📕 Invert 📃

Fig. 7.200: Channel settings for a CDM +Trigger sensor

- Amplifier Mode must be set to Events
- Number of *Pulses* per revolution provided by the CDM signal must be entered
- Route the CDM signal to Source_A and the Trigger signal to Source_Z (HW reset must be enabled)

Note: The Amplifier *Mode* can also be set to *Encoder*. In this case, the same settings as in Fig. 7.201 are mandatory. Note that the routing of the *Source_A* and *Source_B* input cannot be changed.

Mandatory channel settings for Encoder sensors

AMPLIFIE	ROPTIONS	COUNTER GR	OUP SETTINGS	
Mode	Encoder	Туре	Rotation	4
Threshold	2.4 V	Pulses	_360	pulses revolution
Retrigger	V8.0	Mode	_X1	4
Filter	0.1 US	Resample rate	10000	Hz
Coupling	DC 🚽			
		SIGNAL ROUT	ING	
		Source_A Inp	ut_A	Invert
		Source_B Inp	ut_B	Invert
		🖌 HW Reset	SW Reset	Reset now
		Source_Z Inp	ut_Z	Invert

Fig. 7.201: Channel settings for an Encoder sensor

- Amplifier Mode must be set to Encoder
- Number of *Pulses* per revolution provided by the *Input_A* and *Input_B* must be entered
- The counting mode X1, X2, X4 or A-Up/B-Down must be selected

7.7 CAN Input Channels

The following TRION-boards provide one or several CAN ports

- TRION-CAN: 2 or 4 ports
- TRION(3)-18x0-MULTI: 1 CAN port
- TRION-2402-MULTI: 1 CAN port
- TRION-1600-1802-dLV-CAN: 1 CAN port

In addition, Vector devices from the VNxxxx series (i.e. VN1610 or VN7610) can be used for the CAN data acquisition as well. These devices are the dedicated hardware to also acquire CAN-FD data streams and can therefore be used for CAN data acquisition.

Note: The usage of Vector VNxxxx devices requires a separate software license.

V

OXYGEN Online Help, Release 7.6

7.7.1 CAN port configuration

To configure the CAN port properly, go to the Channel List and open the CAN port configuration of the dedicated CAN port by pressing the Gear button (see (1) in Fig. 7.202).

٩][Counte	er CAN	Video Channel	L	Search Color			CAN 1	/1	SN:1234567890		CAN 1/1 Sim	
:=	84				Channel	1	Color	Setup	PO	RT CON	IFIG				
	-	ľ	Local	Node VE3-A4					Baud	l rate	2	500000 Bau	d		4
		Т	∀т	RION-CAN-	4			(1)	Lister	n only	3	False			
.				CAN 1/1 S	im	TRION-CAN-4		۲			\simeq				<u>_</u>
F				CAN 1/2 S	im	TRION-CAN-4		۲		ination	Ċ	False	<u> </u>		4
~				CAN 1/3 S	im	TRION-CAN-4		۲	Auto	nomou	s Resend	False)		4
		Т		CAN 1/4 S	im	TRION-CAN-4		۲	Time	stamp	(6)	AD Sample	Rate		4
		Ľ	> USE	B-Cameras					CPAD	8		ŀ	Add d	ecoder	
									Lo	oad DB	c	Load ARXML		Clear all	
-											Ad	ld message ch	anne	L	٦
											Me	essages & sign	nals		٦
i									FR	AME PR	EVIEW				
										age ID:	1	7			
										7	6	5 4	3	2 1 0	
									0	0 7	0 60	5040	3 0	2 1 1 1	0
									1		0 14 0		11 0	10 1 9 0	8
									2	0 23	\rightarrow		19 0	18 0 17 0 1	6
									3	0 31			27 0 35 0		12
									5		0 46 0		43 0	42 0 41 0 4	0
									6	0 55	$ \rightarrow$		51 0	50 0 49 1 4	8
									7	0 63	0 62 0	61 0 60 0	59 0	58 0 57 0 5	

Fig. 7.202: CAN port configuration

Note: When using the CAN port of a TRION(3)-18x0-MULTI or a TRION-2402—MULTI board, the CAN port is available on AI 1 of these boards. For accessing and using these CAN ports, you have to set the Input mode of AI 1 to CAN first and activate the dedicated CAN port second (see Fig. 7.203)

	AI 1/1@TRIONet_RL AI 1/1@TRIONet_RL TRION-1820-MULTI-4-D	۲			used as CAN	CAN (1)
	Al 1/2@TRIONet_RL AI 1/2@TRIONet_RL TRION-1820-MULTI-4-D	٢			-0.0014024 AVG	Potentiometer
	AI 1/3@TRIONet_RL AI 1/3@TRIONet_RL TRION-1820-MULTI-4-D	٩			-0.0006350 AVG	
	AI 1/4@TRIONet_RL AI 1/4@TRIONet_RL TRION-1820-MULTI-4-D	۵			0.0009646 AVG	1
>	CNT 1/1	豪				ExcCurrentMonitor
>	CNT 1/2	礅	2	-		ExcVoltMonitor
	CAN 1/1@TRIONet_RL CAN 1/1@TRIONet_RL TRION-1820-MULTI-4-D	۲				CAN High Speed

Fig. 7.203: Using the CAN port of a TRION-MULTI board

The following settings are available:

• Baud rate (see 2) in Fig. 7.202):

Select the proper Baud rate of the CAN bus here

• Listen only (see (3) in Fig. 7.202):

With the listen-only mode activated, normal bus activity can be monitored by the device. However, if an error frame is generated by the local CAN controller, it is not transmitted to the bus.

Since in listen-only mode the module has no transmit function this feature must not be used in a point-to-point connection.

For more information, refer to the to the *TRION series technical reference* manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

• Termination (see ④ in Fig. 7.202):

TRION-CAN ports offer a programmable termination resistance, either high impedance (False) or 120 Ω (True).

For more information, refer to the to the *TRION series technical reference* manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

• Autonomous Resend (see (5) in Fig. 7.202):

Only affects CAN data output. For details, refer to CAN data recording.

- Timestamp (see (6) in Fig. 7.202): Sets the time base on which the CAN signals are aligned.
 - 10 MHz:

Assigns a timestamp with 100 ns resolution to the CAN messages and signals. This is the internal time base of the CAN port

AD sample rate:

Assigns the timestamp of the highest analog sample rate to the CAN messages and sig-nals, i.e. 10 kHz analog sample rate results in a timestamp with 100 μ s.

– 100 Hz ... 10 MHz:

A user defined CAN timestamp resolution can be defined as well.

The frame preview (see \bigcirc in Fig. 7.202) will show a preview of the received messages if all settings (especially Baud rate and Termination) are set correctly ad data is available on the CAN port.

Additional settings:

CPAD (see (8) in Fig. 7.202): If a module of the CPAD series is connected to the CAN bus, a CPAD decoder can be added for decoding their messages and signals without the need for a proper dbc-file. For more information, refer to Using XRs / CPADs with OXYGEN.

7.7.2 CAN data recording

After configuring the CAN port properly, the CAN stream must be decoded.

Decoding CAN data by using .dbc or .arxml files

The conventional way to decode the CAN data stream is to load either a dbc-file or an arxml-file which includes the information which CAN messages are included in the CAN data stream and how to decode them into CAN signals.

Thus, press Load DBC... (see (1) in Fig. 7.204) or Load ARXML... (see (2) in Fig. 7.204).

Counter CAN Video	Search.		CAN 1/1 SN:1234567890 TRION-CAN-4 CAN 1/1 Sim
✓ LocalNode			PORT CONFIG
V DEWE3-A4			Baud rate 500000 Baud
V TRION-CAN-4			Listen only False
CAN 1/1 Sim	TRION-CAN-4	۲	
CAN 1/2 Sim	TRION-CAN-4	۲	Termination False A
CAN 1/3 Sim		۲	Autonomous Resend False
CAN 1/3 CAN 1/4 Sim CAN 1/4	TRION-CAN-4	۲	Timestamp AD Sample Rate
> USB-Cameras	TROPONING		CPAD Add decoder
			Load DBC Load ARXM(2) Clear all 3 Add message channel 4 Messages & signals FRAME PREVIEW Message ID: Oxae
			7 6 5 4 3 2 1 0
			1 0 15 0 14 0 13 0 12 0 11 0 20 1 9 0 8 2 0 23 0 22 0 21 0 20 13 0 18 0 17 0 16
			3 0 31 0 30 0 29 0 28 0 27 0 25 0 25 0 24
			4 0 39 0 38 0 37 0 36 0 35 0 34 0 33 0 32
			5 0 47 0 46 0 45 0 44 0 43 0 42 0 41 0 40
			6 0 55 0 54 0 53 0 52 0 51 0 50 0 49 1 48

Fig. 7.204: Decoding CAN data

A file dialog will open to browse and select the proper file.

Note:

- ARXML file decoding is supported in OXYGEN R5.6 or higher
- ARXML file version 4.1 or high is required

After loading the dbc/arxml-file, a channel picker dialog will appear. It is possible to select only dedicat-ed CAN messages and signals for decoding or all channels contained in the file and press Ok afterwards.

Select	t Cha	nnels		
can_20	00_ch.	dbc	earch	
8×	<	>		
	*	Airbag_03		
		AB_MKB_Anforderung Modus (Lüften, Kühlen, Heizen) der Standklimatisierung (Innenraum) zur Remote Anz	eige	01
		AB_MKB_guettig Modus (Lüften, Kühlen, Heizen) der Standklimatisierung (Innenraum) zur Remote Anz	eige	01
		AB_MKB_Safing Modus (Lüften, Kühlen, Heizen) der Standklimatisierung (Innenraum) zur Remote Anz		01
		Airbag_03_BZ		015
		- aribag_03_CRC Parkbremse am CAN-Antrieb, bzw. Bremsen-SUB-CAN		0 255
	~	BAP_ACC		
		BAP_Data_ACC R		0 65535
	~	BAP_Anzeige		
		BAP_Data_Anzeige R		065535
	>	BAP_Anzeige_02		
	>	BAP_Debug_Cmd		
	>	BAP_Debug_Data		
	>	BAP_HYB		
Sh	iow or	ily active messages		
			Cancel	Ok

Fig. 7.205: CAN channel picker dialog

Note: The option *Show only active messages* performs a scan on the CAN bus to check which CAN messages are available on the CAN bus. You will only see the CAN messages and signals included in the dbc- or arxml-file that are currently available on the CAN bus when this option is activated.

After pressing Ok you will find the selected messages and signals in the channel list (see Fig. 7.206)

Г	CAN 1/1 Sim CAN 1/1	TRION-CAN-4	@	0
Г	BAP_ACC		٢	
L	BAP_Data_ACC		٢	0
Г	Airbag_03 CAN MESSAGE		¢	
L	AB_MKB_Safing		٢	0
ľ	AB_MKB_gueltig		¢	0

Fig. 7.206: CAN messages and signals in the Channel List

You can delete all decoded messages and channels by pressing the Clear All button the CAN port config-uration (see ③ in Fig. 7.204).

If one or several messages available on the CAN bus should not be defined in the selected dbc- or arxml-file you can manually add them by pressing *Add message channel* (see ④ in Fig. 7.204) and defining the correct settings in the CAN message setup. More details can be found in *CAN message setup*.

Note: It is also possible to add and decode other CAN channels from a dbc- or arxml file during the data analy-sis (CAN offline decoding). To do so, the steps above have to be repeated within the loaded data file. The only condition is that the raw CAN data stream was stored during data recording.

CAN message setup

Cou	inter CAN Video	Sear	ch			CAN	MESS	AGE					
()	Channe	el 🕴	Color Setu	. p								BA	P_AC
✓ Lo	calNode				ME	SSAG	e set	UP	_				
~ I	DEWE3-A4				Proto	col	CAI	N (2)				
~	TRION-CAN-4				Messa	ige ID	0x6	574	3)				
	CAN 1/1 Sim CAN 1/1	TRION-CAN-4	ø	,	Туре		ST/	ANDA	RD (4)			
	BAP_ACC CAN MESSAGE		(1) *	•	DLC		8	5)					
	BAP_Data_ACC CAN SIGNAL		۵	•	Mode		Rec	eive	6)				
	Airbag_03 CAN MESSAGE										- (2	
	AB_MKB_Safing CAN SIGNAL						A	dd si	gnal	chanr	nel (\mathcal{D}	
	AB_MKB_gueltig				FRA	ME F	REVI	EW					
	CAN 1/2 Sim CAN 1/2	TRION-CAN-4	۵			7	6	5	4	3	2	1	0
	CAN 1/3 Sim CAN 1/3	TRION-CAN-4	0	,	0	7	6	5	4	3	2	1	lsb o
	CAN 1/4 Sim	TRION-CAN-4			1	15 23	14 22	13 21	12 20	11	10 18	9 17	8
> I	USB-Cameras				3	31	30	29	28	27	26	25	24
					4	39	38	37	36	35	34	33	32
					5	47	46	45	44	43	42	41	40
					6	55	54	53	52	51	50	49	48
					7	63	62	61	60	59	58	57	56

The CAN message setup can be accessed by pressing the gear button of the respective CAN message in the Channel List (see (1) in Fig. 7.207).

Fig. 7.207: CAN message channel setup

The following CAN message settings can be edited here if certain settings in the loaded dbc-file were defective:

• Protocol type (see 2) in Fig. 7.207): CAN or J1939 or CAN-FD (if applicable)

For additional information about SAE J1939 data decoding, refer to section 4.

- Message ID (see (3) in Fig. 7.207): The message's ID can be set from 0x00 to 0x7ff
- Message Type (see ④ in Fig. 7.207): Standard or Extended
- DLC (see (5) in Fig. 7.207): The DLC can be set from 0 ... 8 (...64 for CAN-FD)
- Mode (see (6) in Fig. 7.207): The Mode can be set from Receive (Receiving CAN data) to Transmit (Outputting OXYGEN data over CAN).

For additional information, please refer to section 5.

• Add signal channel (see 7) in Fig. 7.207):

If the CAN message includes one additional signal which is not loaded from the dbc-or arxml-file or available within the dbc-file, a new signal can be added. The signal's setting are described in *CAN signal setup*.

CAN signal setup

Counter CAN Video Search	CAN SIGNAL BAP_Data_	ACC	×
✓ LocalNode	MESSAGE SETUP	CHANNEL SETUP	
✓ DEWE3-A4	Protocol CAN	GENERAL	DBC SCALING
V TRION-CAN-4	Message ID 0x674	Data format INTEL	Scale (k factor) 1
CAN 1/1 Sim CAN 1/1 TRION-CAN-4	Type STANDARD	Data type UNSIGNED_INTEGER (3)	Offset 0
BAP_ACC CAN MESSAGE	DLC 8	Start bit 0 4	Unit
BAP_Data_ACC	Mode Receive A	Length 16 (5)	
AB_MKB_Safing	Add signal channel	Signal type REGULAR 6	
AB MKB gueltig	FRAME PREVIEW		\bigcirc
CAN SIGNAL CAN SIGNAL		PREVIEW	
CAN 1/2 TRION-CAN-4	0 7 6 5 4 3 2 1 1 1 0	10	NaN MAX
CAN 1/4 Sim CAN 1/4 Sim CAN 1/4 TRION-CAN-4	1 15 14 13 12 11 10 8 2 23 22 22 20 19 18 17 16		NaN
> USB-Cameras	3 31 30 29 28 27 26 25 24		AC RMS NaN
	4 39 38 37 36 35 34 33 32 5 47 46 45 44 43 42 41 40		AVG NaN
	5 47 46 45 44 43 42 41 40 6 55 54 53 52 51 50 49 48	=	MIN
	7 63 62 61 60 59 58 57 56		NaN
		-10: -0.02s	NaN

The CAN signal setup can be accessed by pressing the gear button of the respective CAN signal in the Channel List (see ① in Fig. 7.208).

Fig. 7.208: CAN signal setup

The following CAN signal settings can be edited here if certain settings in the loaded dbc-file were defective:

- Data format (see 2) in Fig. 7.208): Intel or Motorola
- Data type (see ③ in Fig. 7.208): Double, Float, Signed Integer or Unsigned Integer
- Start bit (see (4) in Fig. 7.208): Define the start bit of the signal within its message
- Length (see (5) in Fig. 7.208): Define the length of the signal within its message
- Signal Type (see 6) in Fig. 7.208): Regular, Multiplexed or Multiplexor
- DBC Scaling (see 7) in Fig. 7.208): Change the scaling of the signal
- Preview: (see (8) in Fig. 7.208): The preview shows the past 10 seconds of the signal to check if proper settings have been applied to the signal.

Signal type

Three different signal types are available in OXYGEN. Signals are the smallest unit of information in a CAN message. The start bit is used to indicate the signal's position within the message.

- Regular: The same signal is transmitted having the same position within the message.
- Multiplexed: Different signals are transmitted within the message. The position of the signals is defined using a multiplex value. This value is transmitted in another signal.
- Multiplexor: This signal contains the information of the different signal's positions within the message, which are transmitted as multiplexed signals.

CAN data decoding using the CAN editor

Instead of using .dbc or .arxml files for data decoding it is also possible to add CAN messages and signals manually. OXYGEN provides a CAN editor for this purpose which can be opened by pressing the *Messages & signal* button the CAN port configuration (see 1) in Fig. 7.209):

@	7		Counte	er CAN	Video		Search			CAN 1			N:123	456789	D	CAN	1/1 Si	m	
	8x	<	>		Channel	1	Color	Setup			I-CAN-	4							_
		~	Local	Node					PO	RT COI	NFIG								٩.
0		Γ	~ DEV	VE3-A4					Baud	rate			5000	000 Ba	ud				h
			~ т	RION-CAN-	4				Listen	h			Fals						
E.				CAN 1/1 S	im	TRION-CAN-4		۲											ų.
Ŧ				CAN 1/2 S	im	TRION-CAN-4		۲	Termi	ination	1		Fals	e					6
~				CAN 1/3 S	im	TRION-CAN-4		۲	Auton	nomou	s Rese	end	Fals	e				_	6
				CAN 1/4 S	im	TRION-CAN-4		۲	Times	stamp			AD S	Samp	le Rate				6
<u> </u>			> USE	CAN 1/4 B-Cameras		TRION-CAN-4	_		CPAD						Add	decod	er		1
										ad DB	~						Clear	- 11	1
									Lo	ad DB	L		Load	AKAI	۹L		Clear	au	
												Add	l mes	sage	chann	el			
										(1)	Me	ssage	es & si	gnals.				1
i									EDA	ME PF									<u>.</u>
																			1.
									Messa	ge ID:	_			_				_	
										7	6		5	4	3	2	1	0	
									0		7 0	60	5 0		0 3			1 0	
									1			14 0 22 0	13 0 21 0		0 11	_		0 8 0 16	
									3		-	22 0 30 0	21 0		0 19 0 27				
									4	_	-	38 0	37 (0 35				
									5			a6 0	45 (
									6	_		54 0	53 (0 51				
									7	0 63	B 0 (52 0	61		0 59			0 56	

Fig. 7.209: CAN port configuration

1	ages for CAN 3/1 Sim	(2)		25
Baudrate		d message Auto-detect new messages	a (4)	
Search	🏹 🣲 Hex		PCF_freigabe 3 Comment_X	
∃× <	> Id (Name	Color Active Scaled Value	MESSAGE SETUP OUTPUT SETUP	51
	0x12e ACC_07	🧧 🚺	Protocol _GN Mode_Receive (7)	4
• •	0x117 ACC_30		Message ID_0x117 FRAME PREVIEW	- 1
	0x117 PCF_Time_to_collision	NaN	AVG Type STANDARD	
	0x117 PCF_freigabe	NaN		
	0x117 AllW_ObjANB_Ausprangu		AUG	
	0x117 AlW_Halten			
	0x117 ABV_Vorstufe	NaN	Arg Data format INTEL 6	
	0x117 ANB_Ziebremsung_Freig		APD Data type _UNSIGNED_INTEGER II	
	0x337 ANB_Zebrensrens_Ve		Ard Startbit 43	
	0x117 ANB_Telbremsung_Freig		AliG Length 1	
	0:117 ANB_Notfallblinken	NaN E	AVG Signal type REGULAR	
	0x117 ANB_Info_Telbremsung		ANG	
	0x317 ANB_CH_Anforderung	NaN	ANG DBC SCALING	
	0x117 ABV2_Priowarnung		AUG Scale (k factor) , 1	
	0x117 AllW2_Ruckprofil	NaN	ANG Offset 0	
	0x117 AWV1_HBA_Param		All Unit	
	0x317 AllW2_Freigabe	NaN	ANG Enum label editor	
	0x117 ANB_CM_Info		ANG	-1
	0x117 AlW1_Ard_Prefil	NaN	AVG PREVIEW	31
	0x117 ACC_10_8Z		AUG Nan MAX ACRMS	
	0x317 ACC_10_CRC		APG MIN	
			NaN Nal	4
			o do NaN	Л
			(9) Geore	

Fig. 7.210: CAN editor overview

The CAN editor can be used to

- Manually add or delete CAN messages and signals (see 1) in Fig. 7.210).
- Scan for CAN messages, which will automatically be created with their ID and DLC. After the scan, a name can be given and signals can be created (see 2) in Fig. 7.210).
- Rename the currently selected CAN message and signal (see (3) in Fig. 7.210).
- Add comments to messages and signals (see ④ in Fig. 7.210).
- Edit CAN messages and access the same settings as described in section CAN message setup (see
 (5) in Fig. 7.210). With the enum label editor a text label can be defined for a specific, unique signal value which is then shown in the digital instrument (see also *Enum scaling*).
- Edit CAN signals and access the same settings as described in *CAN signal setup* (see (6) in Fig. 7.210).
- Set the CAN Message mode to Receive for acquiring data or transmit for outputting OXYGEN data over CAN (see ⑦ in Fig. 7.210).
- Providing a preview of the past 10 seconds of the signal to check if proper settings have been applied to the signal (see (8) in Fig. 7.210).

When finished you can exit the CAN editor again by pressing the Close button (see 9 in Fig. 7.210).

Note: The CAN editor and the related CAN message / signal setup is also available for CAN-FD streams.

7.7.3 SAE J1939 DATA DECODING

SAE J1939 is an overlay of standard CAN for primary use in heavy duty vehicles. It uses a standardized messaging system with parameter group numbers encoded in the extended message frame ID.

Main properties

- Message ID consists of
 - PGN-Number
 - Priority and
 - Source address
- Messages can be longer than standard CAN Frame size due to Multi Frame Messaging system

Decoding of J1939 messages

A simple CAN decoder could receive and decode messages with standard length when the decoder is parametrized with the exact message id. When it comes to practical use, and the user wants to decode and read data with different priority and/or source address, it gets difficult. Also the reading of multi frame messages is not possible with standard tools. OXYGEN supports the Multi Frame Messages as well as decoding messages with varying priority and source address.

Example: DBC-File defines the following Message ID: 0x0CF004FE

- PRIORITY (Encoded) = 0x0C >> bit shift 2 = 0x03 (=3)
- PGN-Number = 0xF004 (=61444)

V

OXYGEN Online Help, Release 7.6

• Source Address = 0xFE (=254, broadcast)

If a message on the CAN has the following Message ID: 0x18F00400

Standard CAN-Decoder would recognize a different message and does not decode it (because the message ID is not identical to the defined one)

To decode it anyway, OXYGEN ignores the priority and the source address (if it is originally defined as 0xFE)

Frame Description (DBC)	Decoded in OXYGEN
PRIO/PGN/SA=0xFE	0x*PGN** (only PGN matters, source address and priority is ignored)
PRIO/PGN/SA≠0xFE	0x*PGN*SA (PGN and Source Address matters, priority is ignored)

Supported DBC-Formats for Description of J1939 Messages (Requirements):

Correct Specification of the VFrameFormat [J1939 PG (ext. ID)]

```
BA_DEF\_ BO\_ "VFrameFormat" ENUM "StandardCAN","ExtendedCAN",
"reserved","J1939PG"; BA_DEF_DEF\_ "VFrameFormat" "J1939PG"; BA\_ "Pro-
tocolType" "J1939";
```

Each Message must have the VFrameFormat Property 3 (according to ENUM)

BA_ "VFrameFormat" BO_ 2633805054 3;

The "Old" format (J1939 PG) is not supported, ask our support, how to convert it to the newer format (J1939 PG (ext. ID)).

Replace Source Address:

If a dbc- or arxml file is loaded that contains J1939 messages, the source Address will be displayed when Show only active messages is activated (see (1) in Fig. 7.211). By Selecting Replace Address it is possible to replace the current source address of the dedicated mes-sage by a user defined one (see (2) in Fig. 7.211).

j1939_masterdbc								
•	<	>						
	>	DM1 Active diagnostic trouble codes	Source Addresses: 0					
	>	EEC1 Electronic Engine Controller 1	Source Addresses: 0 13 111 253					
		(1) (2)						
Sh	ow or	1) 2 Ny active messages V Replace Address 0						

Fig. 7.211: Channel picker for SAE J1939 messages and signals

7.7.4 CAN-OUT - transmitting OXYGEN data via CAN

Note: This is an optional feature and requires a license.

It is possible to transmit OXYGEN channels cyclically over the CAN bus. This functionality is supported by all CAN ports available on the different TRION boards and also by the Vector VN series CAN ports. For transmitting CAN data, it is either possible to load a dedicated dbc file or to define the CAN messages and signals individually by using the CAN editor. To transmit OXYGEN data over CAN, the CAN message Mode must be set to Transmit (see 1) in Fig. 7.212) for that.

CAN SIGNAL	CAN Signal 1		~ 🔜 🗸
MESSAGE SETUP	CHANNEL SETUR		
Protocol	GENERAL	1	DBC SCALING
Message ID 0x1	Data format _INT	L Sc	ale (k factor) _1
Type STANDARD	Data type FLO	ATOf	fset 0
DLC 8	Start bit 0	Un	it
Mode Transmit 1	Length 32		TRANSMISSION SETTINGS
Out frequency 10 2	Hz Signal type REC	ULAR Ch	annel 4 rop or enter channel here
Out delay 70 3	ms	An	ray index _0 5
Add signal channel	PREVIEW		

Fig. 7.212: CAN output settings

The output rate can be defined from 0.1 ... 100 Hz (see 2) in Fig. 7.212) individually for each message. The output delay can be set from 1 ... 500 ms (see 3) in Fig. 7.212). One dedicated OXYGEN scalar time domain channel (i.e. Analog or Digital input, power value such as Active power or another CAN channel) can be assigned to one CAN signal by dropping the channel or typing its name into the Channel section of Transmission settings (see 4) in Fig. 7.212).

It is also possible to output dedicated elements of an array channels (such as harmonics from a power group) over CAN. To do so drop the array channel in to the Channel section (see (4) in Fig. 7.212) of the Transmission Settings and enter the index of the array elements that shall be output in Array index (see (5) in Fig. 7.212). As an example: If the second harmonics of a voltage channel shall be output over CAN, type in the harmonics channel name in the Channel section, i.e. $U1_hRMS@POWER/0$ and enter the index 1 in the Array index section (see Fig. 7.213).

TRANSMIS	SION SETTINGS	
Channel	U1_hRMS@POWER/0	Х
Array index	2	

Fig. 7.213: Outputting arrays elements over CAN

Note that the preview will not show the currently transmitted data but has no functionality when the

message mode is Transmit.

The Autonomous Resend option (see (1) in Fig. 7.214) provides the following functionality for CAN buses which transmit data:

- False (Default): The transceiver only sends the data once no matter if the receiver send an acknowledgement or not and sends the next message right afterwards. This makes the CAN da-ta transmission more deterministic on a correctly terminated CAN bus. But there is a remaining risk that a messages gets lost.
- True: The risk of losing messages during transmission is low as message is resend in case no acknowledgement is sent by the receiver. But the risk of colliding messages of several transceivers is higher.

‡	%	<	ounter CAN	Video Channel		Search Color		CAN 1/1 S TRION-CAN-4	SN:1234567890	l/1 Sim
:=	i I	V I	ocalNode					PORT CONFIG		
		~	DEWE3-A4					Baud rate	500000 Baud	
	_	Ц	V TRION-CAN	-		_		Listen only	False	<u>_</u>
-36	-	н	CAN 1/1		TRION-CAN-4	_	۲	Termination	False	
4		Ш	CAN 1/2 S CAN 1/2	am	TRION-CAN-4		¢		a. 1	
_		П	CAN 1/3 S CAN 1/3	im	TRION-CAN-4		۲	Autonomous Resend	False 1	A
		П	CAN 1/4 S CAN 1/4	im	TRION-CAN-4		۲	Timestamp	AD Sample Rate	
-		>	USB-Cameras					CPAD	Add decode	er 🚽
								Load DBC	Load ARXML	Clear all
-								Ado	d message channel	
								Ме	ssages & signals	

Fig. 7.214: Autonomous resend option

To tune the responsiveness and the signal quality of the transmitted data, we introduced the Out delay (see ③ in Fig. 7.212). This is the time, which the data is delayed before sent. The following graphs show the difference between two individual settings:

OXYGEN Online Help, Release 7.6

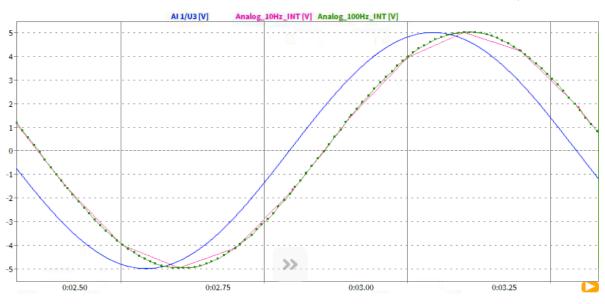


Fig. 7.215: Blue: Analog Input; Green: CAN-Output with a delay of 70 ms (default value)

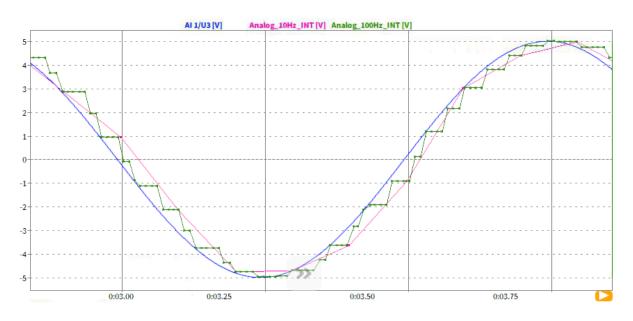


Fig. 7.216: Blue: Analog Input; Green: CAN-Output with a delay of 10ms

It is visible that a sample is repeated in case the delay is too low and no updated data is available yet.

Note:

• Message and Signal Encoding

The signals are encoded with the data type and length defined in the dbc-file or in the CAN sig-nal setup. If the channel has a value higher (or lower) than the possible range, the max (or min) value will be transferred. Make sure, you selected the right range and resolution for the specific channel not to lose information.

• No channel assigned to a signal: the value 0 (Zero) is transmitted

OXYGEN Online Help, Release 7.6

• Channel data is NaN: NaN is transmitted in case of float or double, 0 is transmitted in all other cases

7.8 GPS channels

The following GPS data channels can be acquired by a TRION-TIMING or TRION-VGPS-20/-100 module:

Default channel name	Channel mode	Channel descrip- tion	Range	Unit	Data type	Scaling available
GPS	NMEA	GPS NMEA channel	•	•	String	x
Lati- tude_GPS	Latidtude	Current lat- itude of the object	-90° 90°	o	Double	V
Longi- tude_GPS	Longitude	Current longitude of the object	-180° 180°	o	Double	V
Alti- tude_GPS	Altitude	Current altitude of the object	-100 m 1000 m	m	Double	\checkmark
Veloc- ity_GPS	Velocity	Current ve- locity of the object	0 km/h 300 km/h	km/h	Double	\checkmark
Head- ing_GPS	Direction	Current heading of the object	0° 360°	o	Double	\checkmark
Satel- lites_GPS	Sat	Number of satellites in view	0 24	•	Double	x
Fix Qual- ity_GPS	Quality	GPS Fix	•	•	String	x
H.Dilu- tion_GPS	HDOP	2D de- viation of longi- tude and latitude	0 m 100 m	m	Double	✓

Table 7.40: Available GPS channels

continues on next page

Default channel name	Channel mode	Channel descrip- tion	Range	Unit	Data type	Scaling available
SoD_GPS	Second	Current second of the day	0 s 86400 s	m	Double	x
Date_GPS	Date	Current date in the format yyy-mm-dd hh:mm:ss:ms	•	•	String	x
Acceler- ation_GPS	Acceler- ation	Current acceler- ation of the object	-1000 m/s ² 1000 m/s ² 	m/s²	Double	 ✓
Dis- tance_GPS	Distance	Distance covered from start of mea- surement	0 m 1000000 m	m	Double	\checkmark

-	7.40 1.14	
l able	7.40 – continued from previous page	

Default channel name	Acquired from TRION hardware	Calculated channel	Calculation
GPS	\checkmark	x	•
Latitude_GPS	\checkmark	x	•
Longitude_GPS	\checkmark	x	•
Altitude_GPS	\checkmark	x	•
Velocity_GPS	\checkmark	x	•
Heading_GPS	\checkmark	x	•
Satellites_GPS	\checkmark	x	•
Fix Quality_GPS	\checkmark	x	•
H. Dilution_GPS	\checkmark	x	•
SoD_GPS	\checkmark	x	•
Date_GPS	\checkmark	x	•
Acceleration_GPS	X	\checkmark	Differentiation of channel Velocity_GPS
Distance_GPS	x	\checkmark	Integration of channel Velocity_GPS

Table 7.41: GPS channel type

Note:

- The ranges of the channels are defined per default and have the purpose to define a min/max value if the channels are displayed in an Instrument. The ranges are neither minimum nor maximum limits. Thus, the defined ranges can be overrun and underrun without "clipping".
- Channels of data type *double* with physical unit can optionally be scaled (see ① in Fig. 7.2). This option might be used for changing the physical channel unit from (kilo)meters to miles or km/h to mph.
- Channels of data type *double* can be assigned to mathematical formulas (see *Formula channel*) or statistics calculations (see *Statistics channel*).

- GPS channels cannot be filtered (see *IIR Filter channel*) as these channels are asynchronous channels.
 - During the measurement it might happen that the *GPS Fix Quality* is not *fix* all the time (i.e. GPS connection is lost during a ride through a tunnel). If this happens, the last value of the GPS channels will be hold until the *GPS Fix Quality* will be *fix* again and a new value is received.
 - If the GPS Fix Quality is not fix for more than 60 seconds, the calculated channels Acceleration_GPS and Distance_GPS will change to NaN until the GPS Fix Quality is fix again.
 - The *GPS Fix Quality* is *fix* if the channel receives 1 (GPS fix), 2 (Differential GPS fix), 3 (PPS fix), 4 (Real Time Kinematic) or 5 (Float RTK). The *GPS Fix Quality* is not *fix* if the channel receives 0 (Fix not available), 6 (Estimated (dead reckoning)), 7 (Manual input more) or 8 (Simulation mode)

The individual channels can be assigned to the following Instruments:

Default Chan- nel Name	GPS plot	Analog Meter Digital Meter Bar Meter Indicator	Recorder Chart Recorder	Ta- ble	Sco	peXY plot
GPS*	x	x	x	\checkmark	x	x
Latitude_GPS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Longitude_GPS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Altitude_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Velocity_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Heading_GPS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Satellites_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fix Qual- ity_GPS	x	x	x	x	x	x
H.Dilu- tion_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SoD_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Date_GPS	x	x	x	x	x	x
Acceler- ation_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Distance_GPS	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 7.42: GPS channels - compatible instruments

*The channel *GPS* can be dragged and dropped directly from the Channel List to the measurement screen. If this is performed, the current value of the channels *Latitude*, *Longitude*, *Altitude*, *Velocity*, *Heading*, *Satellites used*, *Quality* and *Dilution* will be displayed (see Fig. 7.217).

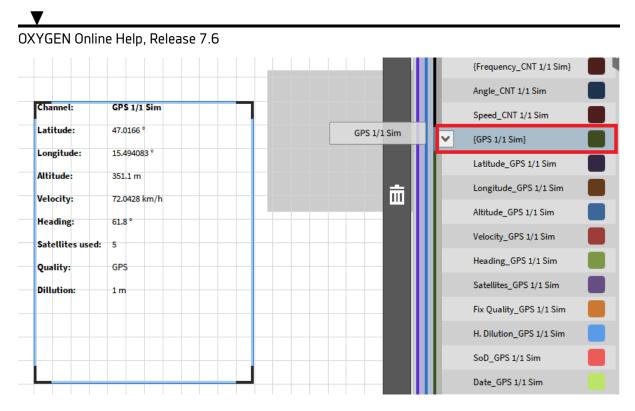


Fig. 7.217: Drag and drop the GPS channel to the measurement screen

Note: During GPS-channel analysis in *PLAY* mode, the GPS channels can also be exported to *.txt, *.csv, *.mdf4 or *.mat format (see *Export Settings*). Please note that GPS-Channels of data type *String* can only be exported to *.txt or *.csv format as the data type is not supported for *.mdf4 and *.mat format.

7.9 TEDS support

TEDS stands for Transducer Electronic Datasheet and is used to identify and apply settings from a sensor directly without manually entering them. The following TRION(3) modules support TEDS:

- TRION(3)-18xx-MULTI
- TRION-2402-MULTI
- TRION-2402-dACC¹

¹TEDS functionality only supported in IEPE[®] mode.

7.9.1 Use in OXYGEN

If a sensor with TEDS interface is connected to an according TRION(3) module, the TEDS interface is automatically detected and the settings are applied to the channel.

To scan for a TEDS interface, also on multiple channels, there is a button Scan TEDS on the lower edge of the channel list menu, seen in Fig. 7.218. Whenever the full channel list menu is open, the scan for TEDS is done continuously and a manual scan is not necessary when the sensor is changed. This is not the case for the TRION-2402-dACC, where the scan must be done with the button in order to scan for TEDS.

It is also possible to disable the TEDS detection by choosing one or multiple channels in the channel list and clicking on the button Disable TEDS, also seen in Fig. 7.218. After disabling the TEDS detection, all set settings from the TEDS are deleted and can be entered manually.

Local	Node DEWE3-8944	*												
		~												
		~	G (она сн © ©		017 018 NJ (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	11000						
		-	CH 1 (H)) () () () () () () () () () () () () ()	Сн к ()) () ()	017 018 NJ7 ③ ④ ●	2						
2	Analog Counter CAI	N	, Search		. Y	-	6 channels selected	«			_			
- 1	> Channe	R	Color	Setup	Active	Stored	Scaled Value	Mode	Sample Rate					
	LocalNode												8	
	V DEWE3-RM4												Vano	
	V TRION3-1820-MULTI-	s-LoB											2	
	Al 1/1 Sim	Accelero		۲			-0.0000000 AV	2) ILF-C	10000 Hz	-939 m/s ² 939 m/s ²	Scale: 1 Offset: 0	Unit: m/s ²		
	Al 1/2 Sim Al 1/2 High Level Vol	inge Output S		۲			-4.0666722 AV	Voltage	10000 Hz	-12.3 strain 4.1 strain	Scale: 1 Offset: 0	Unit: strain		
	Al 1/3 Sim Al 1/3 High Level Voltage			۰		•	-5.7399998 AV	II FORESE	10000 Hz	-12.3 strain 4.1 strain	Scale: 1 Offset: 0	Unit: strain		
	Al 1/4 Sim	Bridge S		۲			1765.5639 AV	G Bridge	10000 Hz	-3129.273 °C 2989.273 °C	Scale: 1 Offset: 0	Unit: *C		
	Al 1/5 Sim Al 1/5 Current Loop Output	or with Excit	ation 📕	۰			-0.0000000 AV	D	10000 Hz	-4.5 m 3 m	Scale: 1 Offset: 0	Unit: m		
	Al 1/6 Sim	Resistance S	ansor 🔲	۰			7067.7364 AV	a nesistance	10000 Hz	-13458.579 K 13909.842 K	Scale: 1 Offset: 0	Unit: K		
		IS MOD-MULTI-	s-L08	۲		•	0.0000000 AV	1) voitage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
	Al 1/8 Sim Al 1/6 TRON	IS MOD-MULTI	0-L05	Φ			0.0000000 AV	G Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
	> CNT 1/1 Sim													
	> CNT 1/2 Sim			\$										
	CAN 1/1 Sim CAN 1/1 TROM	5-1825-MUCTH	a-L05	۰			used as analog	High Speed						
	V TRION-2402-MULTI-8	LOB												
		N-2402-MUCTH	•	۰		•	0.0021897 AV	10 Voitage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MUCTH	6-L05	۲		•	-0.0125596 AV	10 Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MU(T)	8-108	۲		•	-2.0191999 AV	III FORMAGE	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MU(T)	0-L08	۲		-	5.9961596 AV	Voitage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MUCTH	8-L08	۲		•	2.0038399 AV	Voitage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MU(T)	8-108	۲		•	5.0095997 AV	1) voitage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MUCTH	a-L08	۰		•	0.0000000 AV	iii vonage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		N-2402-MU(T)	a-Los	۲			0.0000000 AV	G Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
	CAN 2/1 Sim CAN 21 TRO	N-2402-MU(T)	8-108	۲			used as analog	High Speed						
+	- 3							Zero	Scan TEDS	Disable TEDS	1			

Fig. 7.218: Channel List Menu and TEDS scanning

A detailed channel setting can be seen in Fig. 7.219. Depending on the type of sensor some settings might vary. The settings from the TEDS can be seen here and some settings can be adjusted manually, like the range. By clicking on the shown TEDS serial number, marked red in Fig. 7.219, all the TEDS information and settings can be seen (see blue frame in Fig. 7.219).

By clicking on "Editor" (see green circle in Fig. 7.219) the TEDS editor can be opened (see green frame) which offers the possibility to edit the stored data on the TEDS chip. It is possible to choose between a set of templates (see (1) in Fig. 7.219) or to change the information stored on the TEDS chip manually (see (2) in Fig. 7.219). When all changes are finished the information can be written to the TEDS chip, by clicking on "Write to TEDS" (see purple circle in Fig. 7.219). A window will pop up which asks for confirmation that the data should be written to the TEDS chip.

Note: If the changes will be stored on the TEDS chip, the existing data on the TEDS chip gets lost.

The following TEDS chips are supported: - DS2406 - DS2430A - DS2431 - DS2432 - DS2433

RemoteNode]	AMPLIFIER OPTIONS	lage		VOLTAGE SETTINGS	<i>4</i> .0	SENSOR SCALL		
V TRION-1820-MULTI-4-D	Range .8.0	-	A.	Input type _ Input		OCCUPITION OF	03	
Al 1/1@[RemoteNode] N1(10[RemoteNode] High Levelgut Sensor	LP filter Aut	io	4		TEDS Informat	ion		
TEDS Editor					TEDS: Manufactu	rer 83, Model 300, Versi	on 1A. Serial 1.63929e	+06
Manufacturer 83	Model 300	Serial	number _ 1639293			th Level Voltage Outpu		
Version letter A	Version number 1							1
Template High Level Voltage Microphones with b	Output Sensor (0-30) Suilt-in Preamplifier (0-27)				Name	Value	Unit	Access Level
	plifier and Microphone (0-28				ElecSigType	Voltage Sensor		ID
Eli Capacitive Microph	one (0-29) Output Sensor (0-30)	U			MinPhysVal	-15000.000000	A	CAL
Physic Current Loop Outp					MaxPhysVal	15000.000000	A	CAL
M Resistance Sensor	0-32)				MinElecVal	-18570.000000	v	CAL
MaxPhysVal	15000	A	CAL		MaxElecVal	18570.000000	v	CAL
Full Scale Elect Value Precision	Full precision	1.1	CAL		PRAERCETON	100701000000	•	
MinElecVal	Standard 0-10V	v	CAL					
MaxElecVal	Standard ±10V	v	CAL		Editor		Close	2
MapMeth	20mV precision		ID					
ACDCCoupling	Full precision		ID		Warning: O	Overwrite TEDS?		
SensorImped	1	Ohm	ID					-7.0027 A
RespTime	1e-06	sec	ID		-			
Resprinte	16-00	200	10			want to overwrite all d M? This operation can		
Write to TEDS			Cance	l .	LEIRO	in this operation can		
								1

Fig. 7.219: Detailed Channel Settings with TEDS interface and TEDS editor

To prevent the TEDS data from being overwritten by mistake, the function for writing TEDS chips is deactivated by default. To activate the function, go to the Advanced settings in the *OXYGEN Setup* and activate the corresponding checkbox "Enable TEDS editor" (see Fig. 7.220).

۲	Oxygen Setup	Advanced Settings
100	Storing & Filename	INSTRUMENTS
	Startup Settings	C Diputes enabled
0	Advanced Settings	Non-Deptimenting to know (III and Land
B.		PREZE BUFFCR
4	Dig Harbuare	Hoimun duration (8 s. Nacimum duration (20 s.)
Þ	implifier / K5232 / K5485	a data be length of the tensor buffer depends on the configured sample or notes and a viria behavior. 1 and 20 which, for ong Markin Barly marking and the forestand neuropart community of the configured sample of the configured sample or notes and the configure
-	Sensors	
7	Remote Control	INTER FIRE ENCLOSED/EDINE Final-set a reside to many DECEMBER at insufficient generalization
4	Remote Control	
	User Interface	Syndrom every 10 1 after explains det.
	Localization	
e	Ul Options	HISCLUM OUS STTINGS
	Advanced Graphics	Present USER Sun during massurement
		gapen at confination prompt
	System Information Component Versions	Setting the system prevents any total calcular 32 promptly from showing up and assume a default regionse. This may any any during advanted up advantation of 0005 ML to the sub-antividential from the state of the state
	Errors and Warnings	unger von
	Plugin Overview	
	Line	Constant (LD) solution
	OUTGEN Features	
	Developer CML, Sandhox	
	Are 10.000	
	Quit to 05	
	Shubbran System	
	Jung to measurement settings	
		© *

Fig. 7.220: Activation for writing data to TEDS

More information about the set scaling can be found in the *Sensor Scaling* section by switching to the TEDS tab. This cannot be changed and is only for information for the user. However, it is possible to add an additional scaling in the General tab, which will be used additionally to the already set scaling from the TEDS.

More information about the set scaling can be found in the *Sensor Scaling* section by switching to the TEDS tab. The current scaling will be written in grey and cannot be changed directly and is only for information for the user. To change the scaling information it is possible to perform a 2-point scaling (for detailed information see "Changing the 2-point-scaling" in *Changing the channel settings*) and write it to the TEDS chip by clicking "Write to TEDS in the scaling section of the channel settings (see Fig. 7.221).

Note: If the changes are stored on the TEDS chip, the existing data on the TEDS chip gets lost. However, it is possible to add an additional scaling in the *General* tab, which will be used additionally to the already set scaling from the TEDS.

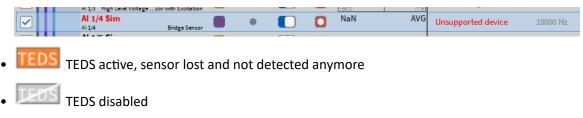

Type TwoPoin	t	
Sensitivity/Offset 1.238	V/A0	A
Calibration	Write to TEDS	
P1: 1.761895979623056	V P2: 7.04931578497	5713 V
AVG AC	RMS AVG	AC RMS
1	A 6	A

Fig. 7.221: Sensor Scaling Information: TEDS

TEDS detection can also be disabled in the detailed settings by clicking on the green TEDS button (marked green in Fig. 7.219). This button has different colors depending on the state, which will be explained here:

- TEDS active; sensor was detected and is in use.
- TEDS active; no sensor was detected.
- TEDS TEDS active; sensor was detected but is not compatible, remove the sensor or disable TEDS.

This case is also shown in the channel list:

7.9.2 Loading a setup

When loading a setup, OXYGEN automatically checks the if the same TEDS can be detected on the current system. If there is a mismatch in the TEDS detection, this specific channel or rather TEDS type is marked red. If a new sensor is detected, the new detected TEDS will be marked red, seen in Fig. 7.222 and the new settings of the sensor can be applied by clicking on Apply of the pop-up window. Otherwise, the remapping must be cleared and the channels, on which the settings should be applied, must be remapped manually, seen in Fig. 7.223. If a sensor from the setup file is missing and is not detected when loading the file, the TEDS type will show the message missing, seen in Fig. 7.224.

Al 1/3 Sim IEPE Accelerometer Al 1/4 Sim IEPE Accelerometer Al 1/4 Sim IEPE Force transducer Al 1/4 Sim IEPE Force transducer		Setup Channels		Auto	Clear			_	System C	Channels
DEVES-8944 DEVES-8944 Image: DEVES-8944 DEVES-8944	> Name	Mode				<	>	Name	Mode	
TRONS-1322-MULTI-8-L08 III A1 J1 Sim Voltage High LoveV Outputs Sensor A1 J1 Sim EFE Accelerometer A1 J2 Sim FEE Accelerometer A1 J2 Sim Voltage Al J1 Sim EFE Accelerometer A1 J2 Sim Voltage Accelerometer A1 J2 Sim Voltage Accelerometer Accelerometer A1 J2 Sim Voltage Accelerometer	LocalNode			22			-	LocalNode		
Al 1/1 SimVoltageHigh Level Voltage Output SensorImage: Constraint of the sensor of	DEWE3-RM4					-11	×	DEWE3-RM4		
Al J/2 Sim IEPE Accelerometer Image: Construction of the construction	 TRION3-1820-MULTI-8-L0B 			13		-111	~	TRION3-1820-MULTI-8-LOB		
Al 1/3 SinIEPEAccelerometerIIIIIIEPEAccelerometerAl 1/4 SinIEPEForce banducerAl 1/4 SinIEPEForce banducerAl 1/4 SinIEPEAccelerometerAl 1/5 SinBridge SensorIAl 1/5 SinVoltageAl 1/5 SinCurrent Loop Output Sensor with EarlAl 1/5 SinVoltageHigh Lovel Voltage Coupt SensorIIAl 1/5 SinCurrent Loop Output Sensor with EarlAl 1/5 SinVoltageHigh Lovel Voltage Coupt SensorIIAl 1/7 SinVoltageResistance SensorAl 1/1 SinVoltageVoltageIIAl 1/7 SinVoltageResistance SensorICM 1/1 SinVoltageIIIIIIIICM 1/1 SinHighSpeedIIIIIIICM 1/1 SinVoltageIIIIIIIITROIA-2002 MUT4-LOBIIIIIIIIAl 2/1 SinVoltageIIIAl 2/2 SinVoltageIIAl 2/1 SinVoltageIIIIAl 2/2 SinVoltageIAl 2/2 SinVoltageIIIIIIIAl 2/2 SinVoltageIIIIIIIAl 2/2 SinVoltageIIIIII <t< td=""><td>AI 1/1 Sim</td><td>Voltage</td><td>High Level Voltage Output Sensor</td><td></td><td></td><td>-111</td><td></td><td>AI 1/1 Sim</td><td>IEPE</td><td>Accelerometer</td></t<>	AI 1/1 Sim	Voltage	High Level Voltage Output Sensor			-111		AI 1/1 Sim	IEPE	Accelerometer
Al J/4 Sim IEPE Force transducer Force transducer<	Al 1/2 Sim	IEPE	Accelerometer			-111		AI 1/2 Sim	Voltage	High Level Voltage Output Sensor
Al J/S Sim Bridge Bridge Sensor Finded Sensor Finded Sensor Current Loop Output Sensor Al J/S Sim Current Loop Output Sensor Al J/S Sim Current Loop Output Sensor Al J/S Sim Kenstel Loop Output Sensor Kenstel Loop Output Sensor Al J/S Sim Kenstel Loop Output Sensor Kenstel Loop Output Sens	AI 1/3 Sim	IEPE	Accelerometer			-111		AI 1/3 Sim	IEPE	Accelerometer
Al J/6 Sim Voltage High Level Voltage Output Sensor Feed Sensor Resistance Sensor Al J/7 Sim Voltage Al J/7 Sim Voltage Al J/7 Sim Voltage Al J/8 Sim Voltage Al J/8 Sim Voltage Al J/8 Sim Voltage V OKT J/2 Sim Voltage Al J/8 Sim Voltage Al J/8 Sim Voltage V OKT J/2 Sim OKT J/2 Sim Voltage Al J/8 Sim Voltage Voltage V TRON-2000/UT14-LUS OKT J/2 Sim Voltage OKT J/2 Sim Voltage OKT J/2 Sim Voltage Al J/8 Sim Voltage OKT J/2 Sim Voltage Al J/2 Sim Voltage OKT J/2 Sim Voltage Al J/2 Sim Voltage OKT J/2 Sim Voltage Al J/2 Sim Voltage OKT	Al 1/4 Sim	IEPE	Force transducer			-111		AI 1/4 Sim	IEPE	Force transducer
Al 1/7 SimVoltageAl 1/7 SimVoltageAl 1/3 SimVoltageAl 1/3 SimVoltage $Al 1/2 Sim$ VoltageAl 1/3 SimVoltage $O KT 1/1 Sim$ HighSpeed $Al 1/2 Sim$ $V la 1/2 Sim$ $C Al 1/1 Sim$ HighSpeed $Al 1/2 Sim$ $V la 1/2 Sim$ $C Al 1/1 Sim$ HighSpeed $Al 1/2 Sim$ $V la 1/2 Sim$ $Al 1/2 Sim$ Voltage $Al 1/2 Sim$ $V la 1/2 Sim$ $Al 2/2 Sim$ Voltage $Al 2/2$	AI 1/5 Sim	Bridge	Bridge Sensor			-111		AI 1/5 Sim	Current	Current Loop Output Sensor with Excitat
A J J & Sim Voltage Voltage Voltage CNT J / Sim CNT J / Sim Voltage Voltage CNT J / Sim M J // Sim Voltage Voltage CANI J / Sim HighSpeed Voltage CAN J / I Sim HighSpeed CANI J / Sim Voltage Al // Sim Voltage CAN J / I Sim HighSpeed V RAJ // Sim Voltage Al // Sim Voltage CAN J / I Sim HighSpeed Al // Sim Voltage Al // Sim Voltage CAN J / I Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltage Al // Sim Voltag	Al 1/6 Sim	Voltage	High Level Voltage Output Sensor			-111		Al 1/6 Sim	Resistance	Resistance Sensor
NT 1/1 Sim NT CNT 1/1 Sim P CNT 1/2 Sim P CN1 1/2 Sim P CN1 1/1 Sim HighSpeed CN1 1/1 Sim HighSpeed Al2/1 Sim Voltage Al2/1 Sim Voltage Al2/2 Sim Voltage Al2/3 Sim Voltage	Al 1/7 Sim	Voltage				-111		AI 1/7 Sim	Voltage	
KNT 1/2 Sim High Speed CAN 1/1 Sim High Speed CAN 1/1 Sim High Speed CAN 1/1 Sim High Speed CAN 1/1 Sim High Speed CAN 1/1 Sim High Speed Y TRIOX-2022-WLT8-L08 CAN 1/1 Sim Voltage CAN 1/1 Sim High Speed A1/2 Sim Voltage CAN 1/1 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim Voltage A1/2 Sim Voltage A1/2 Sim Voltage CAN 1/1 Sim <td>AI 1/8 Sim</td> <td>Voltage</td> <td></td> <td></td> <td></td> <td>-111</td> <td></td> <td>AI 1/8 Sim</td> <td>Voltage</td> <td></td>	AI 1/8 Sim	Voltage				-111		AI 1/8 Sim	Voltage	
CM1 /1 Sim HighSpeed CM1 /1 Sim HighSpeed Image: Sime Sime Sime Sime Sime Sime Sime Sime	CNT 1/1 Sim			2		-111	>	CNT 1/1 Sim		
Y TRION-2402-MULTI-8-L08 Al 2/1 Sim Voltage Al 2/1 Sim Voltage Al 2/2 Sim Voltage	> CNT 1/2 Sim			2		-111	>	CNT 1/2 Sim		
Al 2/1 Sim Voltage Al 2/2 Sim Voltage Al 2/2 Sim Voltage Al 2/2 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage Al 2/5 Sim Voltage Al 2/5 Sim Voltage Al 2/3 Sim Voltage Al 2/3 Sim Voltage	CAN 1/1 Sim	HighSpeed				-111		CAN 1/1 Sim	HighSpeed	
Al 2/2 Sim Voltage Al 2/2 Sim Voltage Al 2/3 Sim Voltage Al 2/2 Sim Voltage Al 2/3 Sim Voltage Al 2/2 Sim Voltage Al 2/2 Sim Voltage Al 2/2 Sim Voltage	TRION-2402-MULTI-8-L0B			9		-111	×	TRION-2402-MULTI-8-L0B		
Al 2/3 Sim Voltage Al 2/4 Sim Voltage Al 2/4 Sim Voltage Al 2/4 Sim Voltage Al 2/5 Sim Voltage Al 2/6 Sim Voltage	Al 2/1 Sim	Voltage				-111		Al 2/1 Sim	Voltage	
Al 2/4 Sim Voltage Al 2/5 Sim Voltage Al 2/5 Sim Voltage Al 2/6 Sim Voltage	Al 2/2 Sim	Voltage				-111		AI 2/2 Sim	Voltage	
Al 2/5 Sim Voltage Al 2/5 Sim Voltage Al 2/6 Sim Voltage Al 2/2 Sim Voltage Al 2/5 Sim Voltage Al 2/2 Sim Voltage Al 2/5 Sim Voltage Al 2/2 Sim Voltage Al 2/5 Sim Voltage Al 2/2 Sim Voltage	Al 2/3 Sim	Voltage				-111		AI 2/3 Sim	Voltage	
Al 2/6 Sim Voltage Al 2/6 Sim Voltage Al 2/7 Sim Voltage Al 2/7 Sim Voltage Al 2/8 Sim Voltage Al 2/8 Sim Voltage	Al 2/4 Sim	Voltage				-111		AI 2/4 Sim	Voltage	
Al 2/7 Sim Voltage Al 2/8 Sim Voltage Al 2/8 Sim Voltage	AI 2/5 Sim	Voltage				-111		AI 2/5 Sim	Voltage	
Al 2/8 Sim Voltage Al 2/8 Sim Voltage	Al 2/6 Sim	-				-111		AI 2/6 Sim	-	
	AI 2/7 Sim	Voltage				-111		AI 2/7 Sim	Voltage	
CAN 2/1 Sim HighSpeed		-				-111			-	
	CAN 2/1 Sim	HighSpeed				-111		CAN 2/1 Sim	HighSpeed	

Fig. 7.222: Hardware mismatch: different TEDS were detected

V

DEW	Name	Setup Channels		Auto	Clear			_	System Ch	annels
DEW		Mode				<	>	Name	Mode	
	alNode			15		- - -		LocalNode		
	VE3-RM4			15		-111	×	DEWE3-RM4		
 TRION3-18 	820-MULTI-8-LOB			6		-111	Υ.	TRION3-1820-MULTI-8-LOB		
A	Al 1/1 Sim	Voltage	High Level Voltage Output Sensor			-111		Al 1/1 Sim	IEPE	Accelerometer
P	Al 1/2 Sim	IEPE	Accelerometer			-111		AI 1/2 Sim	Voltage	High Level Voltage Output Sensor
P	Al 1/3 Sim	IEPE	Accelerometer			-111		AI 1/3 Sim	IEPE	Accelerometer
P	Al 1/4 Sim	IEPE	Force transducer			-111		AI 1/4 Sim	IEPE	Force transducer
P	Al 1/5 Sim	Bridge	Bridge Sensor					AI 1/5 Sim	Current	Current Loop Output Sensor with Excitation
P	Al 1/6 Sim	Voltage	High Level Voltage Output Sensor					AI 1/6 Sim	Resistance	Resistance Sensor
1	Al 1/7 Sim	Voltage				-111		AI 1/7 Sim	Voltage	
1	Al 1/8 Sim	Voltage				-111		AI 1/8 Sim	Voltage	
> Ct	NT 1/1 Sim						>	CNT 1/1 Sim		
> Ct	NT 1/2 Sim					- 11	>	CNT 1/2 Sim		
0	AN 1/1 Sim	HighSpeed						CAN 1/1 Sim	HighSpeed	
 TRION-24 	402-MULTI-8-LOB			9		-111	×	TRION-2402-MULTI-8-L0B		
/	Al 2/1 Sim	Voltage				-111		AI 2/1 Sim	Voltage	
P	Al 2/2 Sim	Voltage				-111		Al 2/2 Sim	Voltage	
/	Al 2/3 Sim	Voltage				-111		AI 2/3 Sim	Voltage	
1	Al 2/4 Sim	Voltage				-111		AI 2/4 Sim	Voltage	
/	Al 2/5 Sim	Voltage				-111		AI 2/5 Sim	Voltage	
1	Al 2/6 Sim	Voltage				-111		AI 2/6 Sim	Voltage	
/	Al 2/7 Sim	Voltage				-111		AI 2/7 Sim	Voltage	
ļ.	Al 2/8 Sim	Voltage				-111		AI 2/8 Sim	Voltage	
0	AN 2/1 Sim	HighSpeed				-111		CAN 2/1 Sim	HighSpeed	

Fig. 7.223: Hardware mismatch: manual remapping of TEDS

		Setup Cha	nnels		Auto	Clear					Systen	n Channels		
>	Name	Mode						<	>	Name	Mode			
_	LocalNode			22				~		LocalNode				
	DEWE3-RM4			22			—iI	T~	,	DEWE3-RM4				
	TRION3-1820-MULTI-8-LOB			13			—iI	1E	× 1	TRION3-1820-MULTI-8-LOB				
	AI 1/1 Sim	Voltage	High Level Voltage Output Sensor				—iI	П		Al 1/1 Sim	Voltage		missing	
	AI 1/2 Sim	IEPE	Accelerometer					н		AI 1/2 Sim	Voltage		missing	
	AI 1/3 Sim	IEPE	Accelerometer	_				н		AI 1/3 Sim	Voltage		missing	
	AI 1/4 Sim	IEPE	Force transducer					н		AI 1/4 Sim	Voltage		missing	
	AI 1/5 Sim	Bridge	Bridge Sensor					П		AI 1/5 Sim	Voltage		missing	
	AI 1/6 Sim	Voltage	High Level Voltage Output Sensor					11		AI 1/6 Sim	Voltage		missing	
	AI 1/7 Sim	Voltage		_				Ш		AI 1/7 Sim	Voltage			
	AI 1/8 Sim	Voltage						ш		AI 1/8 Sim	Voltage			
>	CNT 1/1 Sim			2				Ш	>	CNT 1/1 Sim				
>	CNT 1/2 Sim			2				ш	>	CNT 1/2 Sim				
	CAN 1/1 Sim	HighSpeed						Ш		CAN 1/1 Sim	HighSpeed			
	TRION-2402-MULTI-8-L0B			9				н	× .	TRION-2402-MULTI-8-L0B				
	AI 2/1 Sim	Voltage						Ш		Al 2/1 Sim	Voltage			
	AI 2/2 Sim	Voltage						ш		AI 2/2 Sim	Voltage			
	AI 2/3 Sim	Voltage						Ш		AI 2/3 Sim	Voltage			
	AI 2/4 Sim	Voltage						ш		AI 2/4 Sim	Voltage			
	AI 2/5 Sim	Voltage						Ш		AI 2/5 Sim	Voltage			
	Al 2/6 Sim	Voltage						ш		AI 2/6 Sim	Voltage			
	AI 2/7 Sim	Voltage						Ш		AI 2/7 Sim	Voltage			
	AI 2/8 Sim	Voltage						ш		AI 2/8 Sim	Voltage			
	CAN 2/1 Sim	HighSpeed						ш		CAN 2/1 Sim	HighSpeed			

Fig. 7.224: Hardware mismatch: missing TEDS in loaded setup file

CHAPTER

EIGHT

INSTRUMENTS AND INSTRUMENT PROPERTIES

8.1 Adding an instrument to the measurement screen and channel assignment

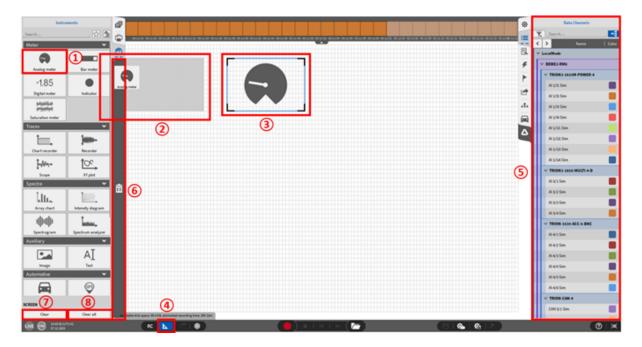


Fig. 8.1: Adding Instruments to the measurement screen

To add an Instrument to the measurement screen, the user must click on the *Instruments* menu and open it while a measurement screen is open. Select the desired Instrument by clicking on it (1), move it to the measurement screen by keeping the mouse button pressed (2) and place it wherever you like by releasing the mouse button (3). In the example of Fig. 8.1, an Analog meter is added to the measurement screen. The Instruments are aligned to the grey grid in the screen background. The *Design* mode is automatically activated when an Instrument is added to the measurement screen. The user can see that the *Design* mode is activated because of the blue background of the *Design* mode button (4) and because of the grey grid in the background of the measurement screen.

In the *Design* mode, the user can now change the size of the Instrument by moving the black corners of the Instrument or change the position of the Instrument by grabbing it at the blue frame.

Instrument properties – Channels tab

In the "Channel" tab, the selected data channels can be rearranged by drag and dropped. This changes the order in the label.

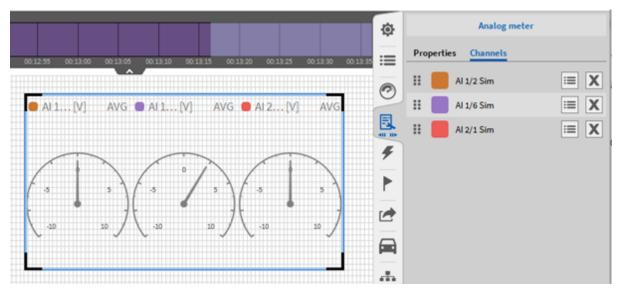


Fig. 8.2: Instrument properties - Channels tab

Deactivated channels are displayed in {} brackets and remain assigned to the instrument.

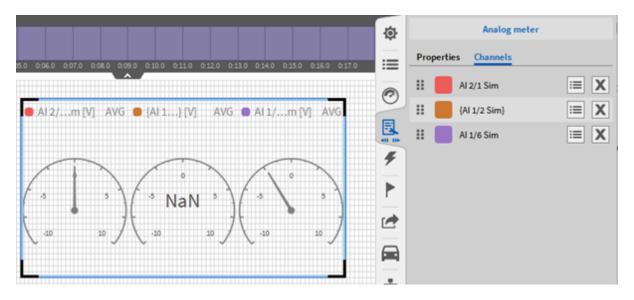


Fig. 8.3: Instrument properties - Channels tab, deactivated channels

Note:

• Several Instruments on the screen can be selected by drawing a selection rectangular with the left mouse button like it is known from Windows Explorer or similar (see Fig. 8.4) or by keeping **CTRL+SHIFT** pressed while selecting the Instruments. All Instruments on a measurement screen can be selected by pressing **CTRL+A**.

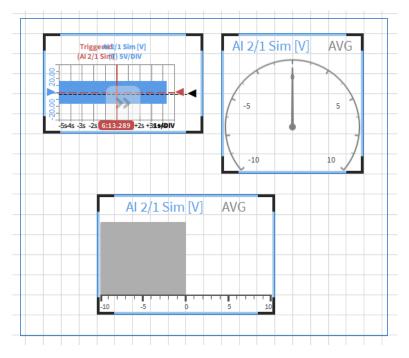


Fig. 8.4: Selection of several Instruments in the Design Mode

• It is possible to activate the *Design* mode in the *LIVE* mode as well as in the *REC* mode and in the *PLAY* mode.

To assign a data channel to an Instrument, the user can select the desired channel in the *Data Channel* menu (5) by just clicking on it when the respective Instrument is selected in the measurement screen.

The functionality and properties of the individual Instruments will be explained in the following sections in detail.

As explained above, the user can add and modify the instruments on the measurement screen when the *Design* mode is activated. The user can also delete Instruments from the screen by selecting them and clicking on the rubbish bin (6) next to the Instruments menu or by grabbing the respective Instrument and move it to the rubbish bin or by selecting the Instrument and pressing the **DEL**-key. To exit the *Design* mode again, the user must click on the *Design mode* button and the grey grid on the background of the measurement screen will disappear. The *Clear* button (7) will erase all Instruments from the currently displayed measurement screen. The *Clear All* button (8) will erase all Instruments from all measurement screens.

Note: Pressing the Clear and the Clear all button can NOT be reverted.

Adding a whole board to an instrument via drag'n'drop instead of single channels

To add an entire measurement map to an instrument, the instrument must be placed on the measurement screen and then the map outline must be dragged into the instrument.

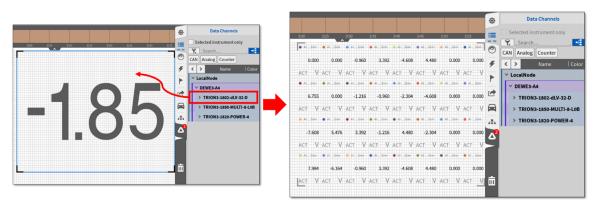


Fig. 8.5: Drag and drop of whole measurement board into Instrument

8.2 Analog meter

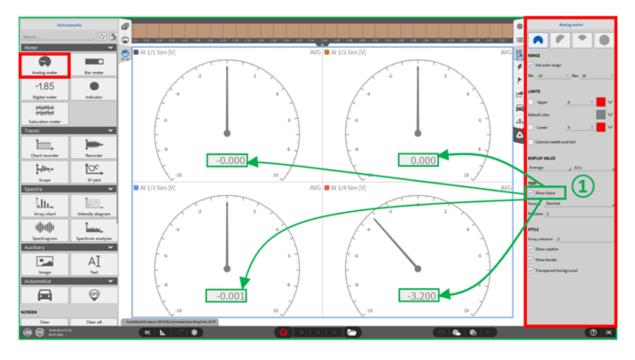


Fig. 8.6: Analog meter - Overview

The Analog meter can be set up in quite a few different ways. The screen capture to the right shows the various customizable Instrument Properties for this display and they are as follows:

• Four different visualization options for the indicator:

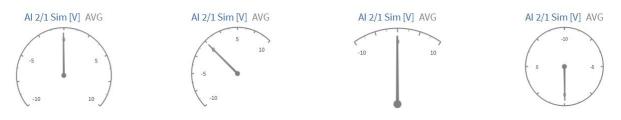


Fig. 8.7: Analog meter - visualization options

- Range settings: The user has the options of using auto range or a user defined range.
- Limits: Allows users to color the dial based on different limit values. The user also has the option to colorize the indicators needle which helps in identifying signals which have hit a limit. This is illustrated in the screen capture.
- Display value: The Instruments displays either the actual channel value or the Average, RMS, ACRMS, Min, Max or Peak2Peak value at a user defined time interval of 0.1 s, 0.25 s, 0.5 s, 1.0 s, Delay, Sat (saturation).
- Show value: If the checkbox for "Show value" is activated (see (1) in Fig. 8.6), the value is additionally shown in digital form in the analog display.
- Style: The user can specify the number of columns for an Analog meter cluster if several channels are selected. Selection of a transparent or untransparent background.
- Layer: Moves the Instrument in front of or behind another object (only applicable in *Design Mode*).

Note: Up to 96 channels can be assigned to one single Analog Meter.

8.3 Digital meter

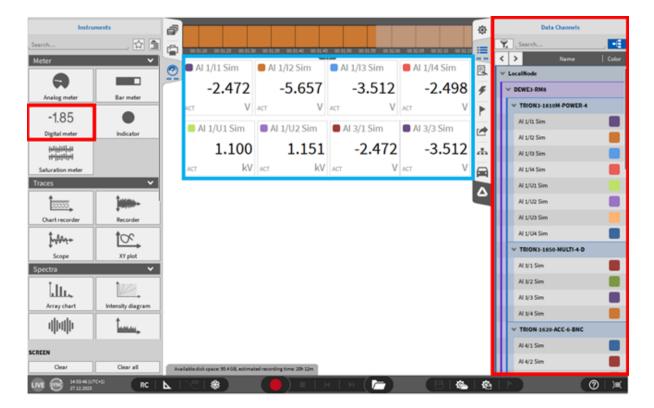


Fig. 8.8: Digital meter – overview

The Digital meter provides the user with the ability to definitively and quickly see what is going on with a measurement channel. This capability is further enhanced with the following list of features:

• Limits: Allows users to color the Digital meters' text based on different limit values. This really helps in identifying signals which have hit a limit when the display is very "busy". This is illustrated in Fig. 8.9. It is possible to define colors for upper and lower limit as well as a default color between the upper and lower limit. First, it is necessary to define a value for the limits (except of the default setting). Afterwards it is possible to define a color for the text and the background by pressing the button (1) shown in Fig. 8.9. When pressing one of the buttons in (1) for the respective limit a new window appears ((2) in Fig. 8.9). Here it is possible to define the color for the text itself as well as the color for the background. With the buttons "Default text color" and "Default background color" it is possible to go back to the default settings, with the button "Swap" it is possible to switch the setting of the text and the background. By pressing the "Ok" button the settings will be stored for the selected digital meter.

For the background it is necessary to deactivate the "Transparent Background" option (③ in Fig. 8.9).

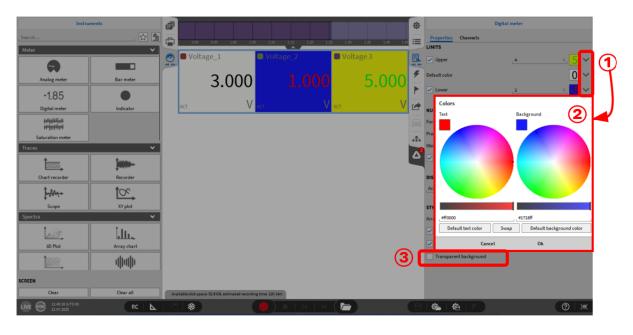


Fig. 8.9: Digital meter – Limits

- Number Format: This option gives the ability to either display the shown values in *Scientific* or *Decimal* format.
- Precision: Number of decimals right to the right of the comma can be entered here
- Minimum digits: Minimum number of digits can be entered here; If the measurement value exceeds the number of digits, it will be displayed anyway but the font size will be decreased
- Select suitable unit: a suitable unit prefix (i.e. milli or kilo) will be automatically selected if it makes sense in case this option is selected
- Display Value: The Instrument displays either the actual channel value or the Average, RMS, ACRMS, Min, Max or Peak2Peak value at a user defined time interval of 0.1 s, 0.25 s, 0.5 s, 1.0 s, Delay, Sat (saturation).
- Style: The user can specify the number of columns for a Digital meter cluster if several channels are selected. Selection of a transparent or untransparent background.
- Show border: A grey line is drawn between the single measurement channels in case this option is selected.

• Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*).

Note: Up to 96 channels can be assigned to one single Digital Meter.

8.4 Recorder

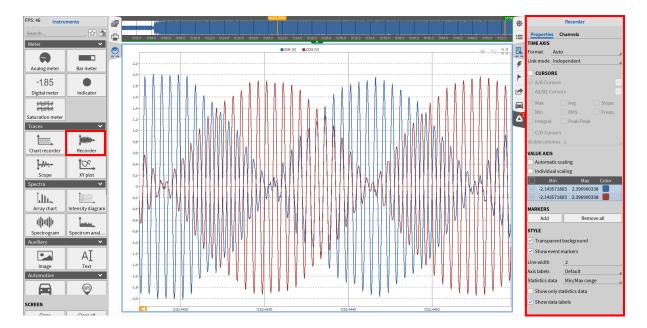
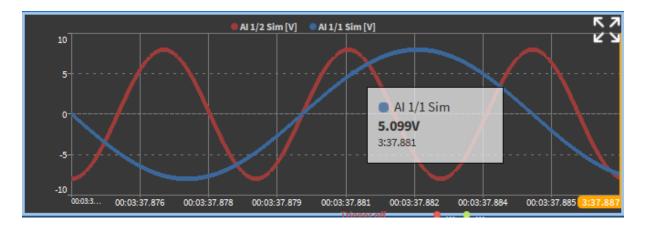


Fig. 8.10: Recorder - Overview

This Instrument replicates the functionality of a strip chart recorder in combination with many additional features.


Note: Up to 40 channels can be assigned to one single Recorder.

8.4.1 Instrument properties

The following properties can be manipulated via the Instrument Properties menu:

- Time Axis: This property changes the format of the X-axis. The user can select between Auto, Absolute time and Relative time.
 - Auto: In Sync Mode, the Auto time format is the Absolute time, otherwise the Auto time format is the Relative time
 - Absolute time: The unit of the X-axis is the actual time of day set in the OS settings
 - *Relative time*: The unit of the X-axis is the relative time starting with 0:00 for every new measurement

- Cursors: Select the individual parameters that are calculated when the cursors are used. For the detailed cursor description refer to section *Activate cursors*.
- Value Axis: This property allows the user to specify the range on the Y-axis.
 - When the option *Individual Scaling* is selected, the scaling can be changed individually per channel and each channel will have an own Y-axis. If it is deselected, all channels will have one common Y-axis. For further scaling details, please refer to *Quick selection Y-axis scaling*.
 - If Automatic Scaling is selected, the Y-axis will always be adjusted to the actual displayed data.
- Markers: Add up to 10 markers or remove all set markers at once. This option is only available in PLAY or Freeze mode. The markers behave similarly to the *Markers*.
- Style: The following properties can be adjusted:
 - Enable/disable transparent background
 - Show/hide event markers
 - Adjust the line width
 - Change the granularity of the time axis scaling via Axis labels
 - Show only statistics data will solely display statistical data. The type of statistical data to be visualized can be selected via Statistics data. To display statistical data, enable statistics within the menu *Triggered Events* – tab *Recording Mode* – section *Statistics*.
 - Show data labels hides/displays permanent data labels in PLAY mode
 - Layer (only applicable in Design Mode): Moves the Instrument in front of or behind another object

8.4.2 Labels

Fig. 8.11: Mouse-over information

To show data labels the Data Labels (see Measurement screen) button must be active.

• In LIVE mode, labels appear only when the Freeze function is active and the user hovers over a data point.

• In PLAY mode, clicking a data point will permanently display its label. Each permanent label can be individually positioned and removed. By unticking the Show data labels option in the instrument properties, permanent labels can be hidden. Disabling this option prevents labels from being displayed in the recorder but does not delete them.

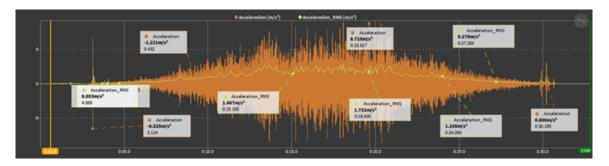


Fig. 8.12: Permanent labels in PLAY mode

8.4.3 Linking the time axis of several recorders

It is possible to link the time axis of several adjacent Recorders, the time axis of all Recorders on one page or it is possible to define Recorder groups which can also be linked over several measurement screens. This simplifies time zooming operations with several Recorders tremendously. This can be selected in the Link mode dropdown menu available in the Instrument properties (see Fig. 8.13) and must be selected for each Recorder separately.

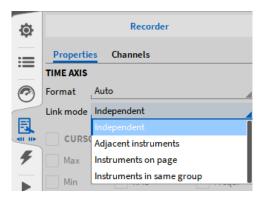


Fig. 8.13: Recorder link mode

When "Instruments in same group" is selected as Link Mode, there will be added an additional property to define a link group. It is possible to define any number of groups, see Fig. 8.14.

٩	Recorder					
:=	Properties Channels					
TIME AXIS						
0	Format	Auto				
	Link mode	Instruments in same group				
	Link group	Linkgroup1 🥢				

Fig. 8.14: Recorder link groups

The selected link mode is denoted in the lower left side of each Recorder: "Pag" for *Instruments on Page* and "Lnk" of *Adjacent Recorders*. If the link mode is set to Instruments on page "Pag", the AB cursors are also linked for all instruments on the page.

8.4.4 Additional properties

To use further functionality of this instrument, the *Design* mode must be left. The following additional features are available:

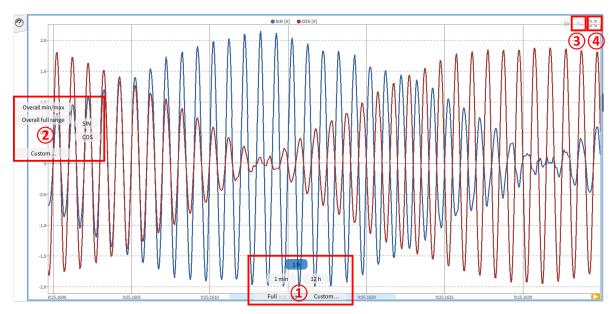


Fig. 8.15: Additional features of the Recorder

- 1. Quick selection X-axis scaling
- 2. Quick selection Y-axis scaling
- 3. Activate cursors
- 4. Quick expansion button
- 5. Pinch/Scroll zoom feature (mousewheel or right mouse button)

Quick selection X-axis scaling

This property menu appears via left click or touch and hold the X-axis of the recorder. By dragging your clicked mouse cursor or your finger into one of these menu fields and releasing you will select a new range setup. The user can select the following options:

• Full: Sets the time axis of the recorder to the total elapsed recording time

Note: By one right click on the X-axis, the total elapsed recording time will be displayed as well.

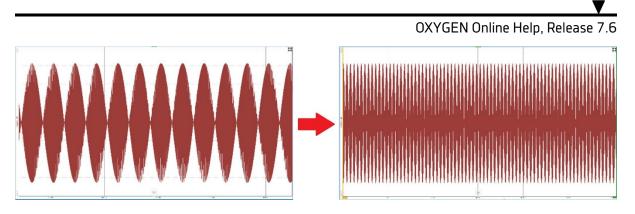


Fig. 8.16: Changing the X-axis scaling to the full time with one right click

- 1 min: Sets the time axis of the recorder to a one-minute window of the current recording time
- 1 h: Sets the time axis of the recorder to a one-hour window of the current recording time
- 12 h: Sets the time axis of the recorder to a twelve-hour window of the current recording time. If your current recording duration is below twelve hours, you will see negative time within your recorder if *Relative time* is selected in the *Time Axis* properties.
- Custom: Possibility to select an individual time window:

Time Axis Scaling	
00 h Range start <mark>0 h</mark> :0	min_: 53.45 s
Duration <u>0</u> h : 0	min_: 0.005 s,
Cancel	Ok

Fig. 8.17: Window to define a customized X-axis scaling

Useful shortcuts

- Scrolling with the mouse wheel will zoom into the X-axis
- Pressing the Shift key while scroll zooming will accelerate your zooming speed
- Right clicking and dragging across the Recorder will allow the user to zoom into a specific region of the recorder (only available during recording or in *freeze* mode)
- Performing a single right click will un-zoom the users Recorder instrument one step at a time

Quick selection Y-axis scaling

This property menu appears via left click or touch and hold the Y-axis of the recorder. By dragging your clicked mouse cursor or your finger into one of these menu fields and releasing, you will select a new range setup. The user can select the following options:

- Overall min/max: Will set the range of all channels in the recorder to min/max value range of the highest signal amplitude displayed in the recorder
- Overall full range: Sets the range of all channels in the recorder to the specified range of the channel with the highest range settings.

Note: This Scaling option is also accessible by pressing the **CTRL** key and clicking on a channel name.

- Individual full range (Only available when *Individual scaling* is selected in the Instrument Properties): Sets the range of all channels assigned to the recorder to their individual full range values.
- Individual min/max (Only available when *Individual scaling* is selected in the Instrument Properties): Sets the range of all the channels assigned to the recorder to their own individual min/max values.
- A click on the individual channel name will only set the selected channel to its individual min/max value. This scaling option is also possible by clicking on the channel name on the Y-axis
- Custom: (Only available when *Individual scaling* is not selected in the Instrument Properties): Possibility to define a customized range for the Y-axis that will affect all plotted signals:

Value Axis Scaling					
Maximum value _2.15367893301					
Minimum value2.25498656958					
+/-1 +/-10 +/-100					
Cancel Ok					

Fig. 8.18: Window to define a customized Y-axis scaling (Individual Scaling selected)

Example: Two channels are displayed in one Recorder. Channel 1 has a Signal Input Range of ± 10 V and the range of the currently displayed data is ± 8 V. Channel 2 has a Signal Input Range of ± 3 V and the range of the currently displayed data is ± 2 V.

- Clicking on Overall min/max: The scaling of both channels is set to ±8 V
- Clicking on Overall full range: The scaling of both channels is set to ±10 V.
- Clicking on Individual full range: The scaling of channel 1 is set to ±10 V and the scaling of channel 2 to is set to ±3 V
- Clicking on Individual min/max: The scaling of channel 1 is set to
- Clicking on the name of Channel 1
 - will set the scaling of Channel 1 to ±8 V and not affect the scaling of Channel 2 if *Individual* scaling is selected
 - will set the scaling of the Y-axis to ±8 V if Individual scaling is de-selected
- Clicking on the name of Channel 2
 - will set the scaling of Channel 2 to ±2 V and not affect the scaling of Channel 1 if *Individual* scaling is selected

- will set the scaling of the Y-axis to ±2 V if Individual scaling is de-selected

Note: When *Individual scaling* is selected, the *Custom* option will not be available by clicking on the Y-axis and keeping the mouse button pressed. To enter this pop-up window when *Individual scaling* is selected, click on the min/max value of the Y-axis scaling:

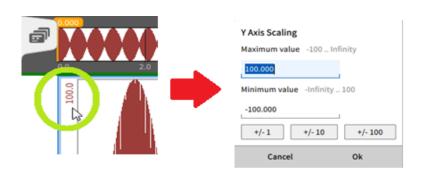


Fig. 8.19: Define a customized Y-axis scaling for one channel (Individual Scaling not selected)

If several channels are displayed and the scaling of all channels shall be set to the same range, click on the min/max scaling of one channel while keeping the **CTRL** key pressed and the scaling menu will appear as well. In this case the settings will be assigned to all displayed channels:



Fig. 8.20: Define a customized Y-axis scaling for all channels (individual scaling not selected)

Useful shortcuts

- Pressing the CTRL key while scrolling with the mouse wheel will zoom into the Y-axis.
- Pressing the Shift key while scroll zooming will accelerate your zooming speed
- Right clicking and dragging across the Recorder will allow the user to zoom into a specific region of the recorder (only available during recording or in *freeze* mode and if *Automatic Scaling* is *not* selected)
- Performing a single right click will un-zoom the users Recorder instrument one step at a time
- Right clicking on a channel along the Y-axis will set the channels' maximum and minimum value to the channels full range which is dictated in that channel's setup page

Activate cursors

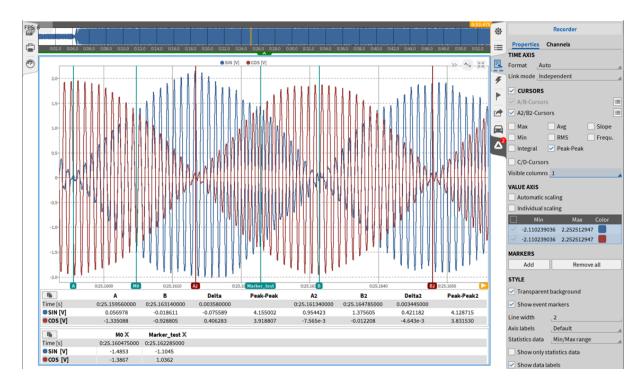


Fig. 8.21: Activated cursors - overview

The cursors can be activated in the upper right corner of the recorder. This option is only available in *PLAY* or *Freeze* mode. After the cursors are activated, 2 cursors *A* and *B* appear in the recorder window. It is also possible to add another AB-cursor pair (A2/B2). In addition, a table appears with the current position of the cursors, the corresponding signal value and the difference *Delta* between the cursor positions (see Fig. 8.21).

$$Delta = \text{Time}_{\text{CursorB}} - \text{Time}_{\text{CursorA}}[s]$$

The position of the cursors can be changed by moving them to the left and right. By holding SHIFT both A and B cursor can be moved simultaneously. By default, the cursor snaps to the sample points. When holding CTRL the cursor can be moved freely between samples.

Renaming the cursors

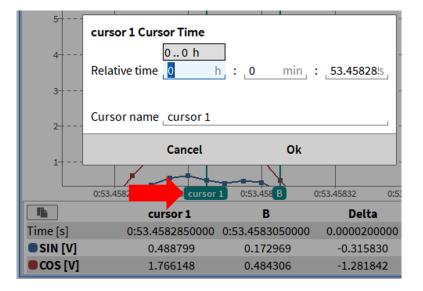


Fig. 8.22: Renaming the cursors

A click on the cursor name (see red arrow in Fig. 8.22) opens a popup with the possibility to enter a specific instant of time where the cursor shall be placed at and to change the *Cursor Name*. This applicable for cursor *A* and *B*. If several Recorders are used, the cursors of each Recorder can be renamed individually. If the cursors are deactivated and activated again, the individual names will be stored.

Measurement capabilities by using cursors

Additional information can be displayed in the table by selecting it in the *CURSORS* section in the Instrument Properties (see Fig. 8.21). The additional values are the following:

• Max: Displays the maximum signal level between cursor A and cursor B

$$Max = Max \{Signal \ level_i\} \ [Unit]$$

• Avg: Calculates the arithmetic mean value respecting the signal level from cursor A to cursor B according to the following formula:

$$\mathsf{Mean} = rac{1}{N}\sum_{i=1}^{N}\mathsf{Signalleve}l_i \ [\mathsf{Unit}]$$

• Slope: Calculates the slope of the signal between cursor A and cursor B according to the following formula:

$$Slope = \frac{Signal \ level_{CursorB} - Signal \ level_{CursorA}}{Delta} \left[\frac{Unit}{s} \right]$$

• Min: Displays the minimum signal level between cursor A and cursor B

$$Min = Min \{Signal \ level_i\} \ [Unit]$$

• RMS: Calculates the quadratic mean value respecting the signal levels from cursor A to cursor B:

$$\mathsf{RMS} = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left(\mathsf{Signal}\ \mathsf{level}l_i
ight)^2}\left[\mathsf{Unit}
ight]$$

• Peak-Peak: Calculates the difference between maximum and minimum signal level in range of cursor A to cursor B:

$$\mathsf{Peak}\operatorname{-}\mathsf{Peak} = \mathsf{Max}\{\mathsf{Signal} \ \mathsf{level}_i\} - \mathsf{Min}\{\mathsf{Signal} \ \mathsf{level}_d\}$$

• Frequ.: This value is the reciprocal value of *Delta*.

Frequ. =
$$\frac{1}{\text{Delta}} \left[\frac{1}{s} = \text{Hz}\right]$$

• Integral: Calculates the area within the Y-axis and the signal from cursor A to cursor B according to the following formula:

$$Integral = Mean * Delta [Unit * s]$$

- C/D-cursors: Adds two additional cursors that can be moved vertically (not available for a Chart Recorder). Holding shift will move both cursors simultaneously.
 - TimeCursorA... Instant of time at position of cursor A
 - TimeCursorB... Instant of time at position of cursor B
 - Signal LevelCursorA.... Level of the signal at position of cursor A
 - Signal LevelCursorB.... Level of the signal at position of cursor B
 - Signal Leveli.... Signal level at position i between cursor A and B
 - -i = 1...N
 - i = 1 =: Cursor A
 - i = N =: Cursor B

The following example of a 0.5 Hz sine wave that was sampled with 10 Hz will demonstrate the calculations:

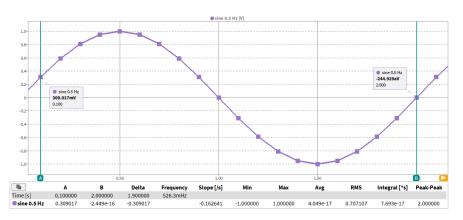


Fig. 8.23: 0.5 Hz sine wave in a Recorder; Cursor A @ 0.1s and cursor B @ 2.0 s

In table format, the signal looks as follows:

i = 120; N = 20		Time [s]	Sine 0.5 Hz [V]
Cursor A	1	0.1	0.309017
cursor //	2	0.2	0.587785
	3	0.3	0.809017
	4	0.4	0.951057
	5	0.5	1.000000
	6	0.6	0.951057
	7	0.7	0.809017
	8	0.8	0.587785
	9	0.9	0.309017
	10	1.0	0.000000
	11	1.1	-0.309017
	12	1.2	-0.587785
	13	1.3	-0.809017
	14	1.4	-0.951057
	15	1.5	-1.000000
	16	1.6	-0.951057
	17	1.7	-0.809017
	18	1.8	-0.587785
	19	1.9	-0.309017
Cursor B	20	2.0	0.000000

Table 8.1: 0.5 Hz sine wave sampled with 10 Hz in table format

In the following section, the values displayed with the cursors are calculated for this signal and can be compared with the OXYGEN results in Fig. 8.23.

• Delta:

$$Delta = Time_{CursorB} - Time_{CursorA} = 2.0s - 0.1s = 1.9s$$

• Max:

The maximum value between cursor A and B is 1.0 V @0.5s

• Avg:

$$AVG = \frac{1}{N} \sum_{i=1}^{N} Signallevel_i =$$

 $\frac{1}{20} * (0.309017 \text{ V} + 0.587785 \text{ V} + 0.809017 \text{ V} + 0.951057 \text{ V} + 1.000000 \text{ V} + 0.951057 \text{ V} + 0.809017 \text{ V} + 0.587785 \text{ V} + 0.5877858785 \text{ V} + 0.58778585 \text{ V} + 0.5877858785 \text{ V} +$

• Slope:

$$\mathsf{Slope} = \frac{\mathsf{Signal} \; \mathsf{level}_{\mathsf{CursorB}} - \mathsf{Signal} \; \mathsf{level}_{\mathsf{CursorA}}}{\mathsf{Delta}} = \frac{0.000000 \; V - 0.309017 \, V}{1.9 \, s} = -0.162640 \; \frac{V}{s}$$

• Min:

The minimum value between cursor A and B is 0.0 V @1.0s and 2.0s

• RMS:

$$\sqrt{\{\frac{1}{20}\sum_{1}^{20}}$$

 $[(0.309017 V)^{2} + (0.587785 V)^{2} + (0.809017 V)^{2} + (0.951057 V)^{2} + (1.000000 V)^{2} + (0.951057 V)^{2} + (0.809017 V)^{2} + (0.951057 V)^{2} + (0.951057$

• Frequ.:

Frequ. =
$$\frac{1}{\text{Delta}} = \frac{1}{1.9} = 526.3 \text{ mHz}$$

• Integral:

 $\mathsf{Integral} = \mathsf{Mean} * \mathsf{Delta} = 0.000000 \ V * 1.9 \ s = 0 \ \mathsf{Vs}$

Note: Besides the Recorder Instrument, the cursor option is also available for the Chart Recorder and the Scope.

Copy cursor values to clipboard

It is also possible to copy the displayed cursor values directly from the instrument in use to the clipboard and paste them into an Excel file or a simple text file, for example. To do this, simply click on the copy button displayed on the left above the table of cursor values (see (1) in Fig. 8.24) or you can simply click in the instrument with the left mouse button and copy the values with the key combination "CTRL + C".

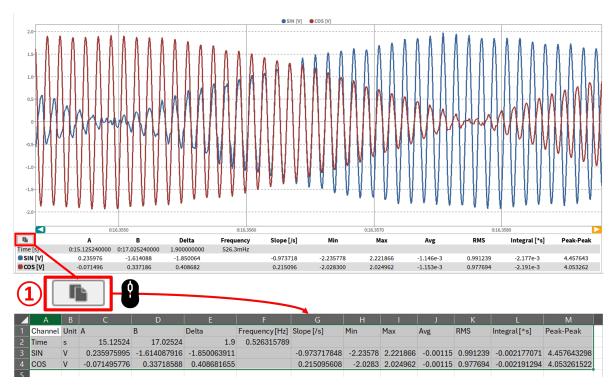


Fig. 8.24: Copy cursor values to clipboard

Quick expansion button

This button enlarges the Recorder to the full size of the measurement screen and reduces it to its original size. When the Recorder is set to the full size, all other instruments will move to the background.

Remark: Besides the Recorder, the Quick expansion button is also available for the Chart Recorder, the Scope, the FFT, the Video and the XY Plot.

Pinch/Scroll zoom feature

The zoom feature is a fundamental tool for the usage of the Recorder. It offers the user the possibility to scrutinize the data easily in **real time**.

• Operating on a touch screen:

To perform this action with a touch screen, just do what you do with an everyday picture on your smart phone, pinch and zoom. Since the screen on a Trendcorder is so large, it is sometimes easier to use both hands to perform this action until you drill down into the finer data points.

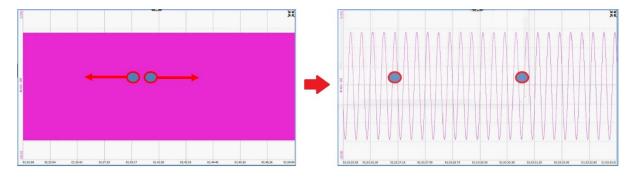


Fig. 8.25: Zooming on a touch screen

• Operating with a mouse:

To zoom into the data with a mouse simply scroll upwards with the mouse's scroll wheel or use the **right** mouse button in the following way:

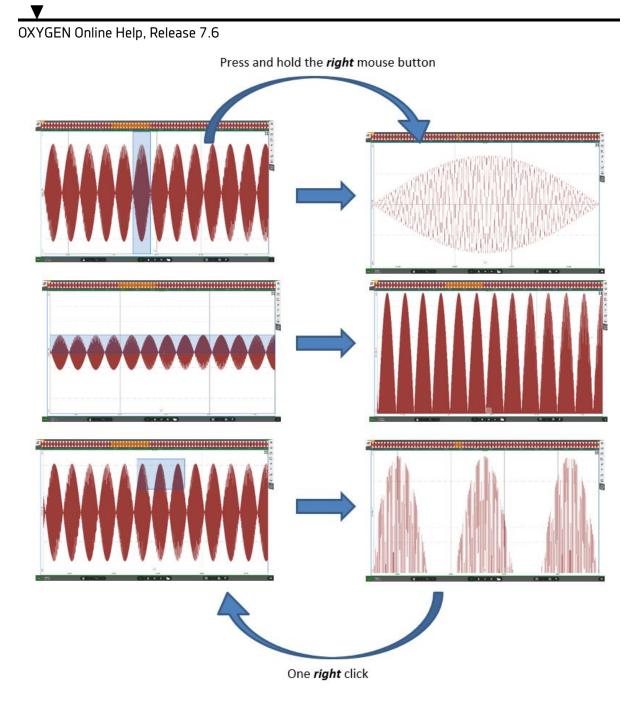


Fig. 8.26: Zooming with a mouse

8.4.5 DejaView™

While recording data, the user is free to use the Recorder to view data from the past, even during long duration recording. This feature is called DejaView^M. For activating this function, the user must click with the left mouse button in the recorder or touch the recorder with his finger and drag or swipe to the right. From this point the user is also free to pinch or scroll zoom into the data. To quickly get back to looking at the current data the user can simply press the grey >> symbol (see (2) in Fig. 8.27) and they will be snapped back into time with the current incoming data. This is one of the most **powerful** features of the OXYGEN software.

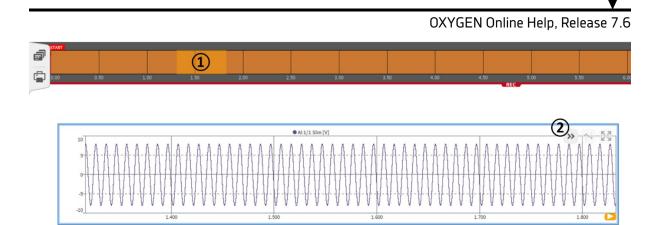


Fig. 8.27: Operational Features of DejaView™

- Operational features of DejaView[™] (see Fig. 8.27)
- ① Shows the part of the measurement file that is displayed in the recorder
- ② After pressing this button, the recorder will jump to the actual position of the measurement file and show the latest recorded data. A right click on this button makes the recorder show the recorded data from the recording start to the actual time position on the right end of the recorder

Note: The DejaView[™] feature can be enabled and disabled in the *System Settings* menu point *Advanced Setup* (see *Advanced settings*).

8.5 Chart Recorder

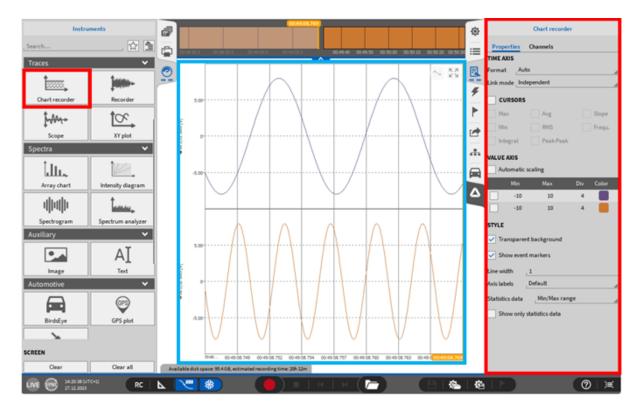


Fig. 8.28: Chart Recorder - overview

The Chart Recorder provides the user with the ability to view data together in one instrument as separate strip charts that are arranged one below the other. The Chart Recorder offers the same properties and analysis possibilities as the Recorder. For a detailed description refer to *Recorder*.

Note: Up to 16 channels can be assigned to one single Chart Recorder.

8.6 Bar Meter

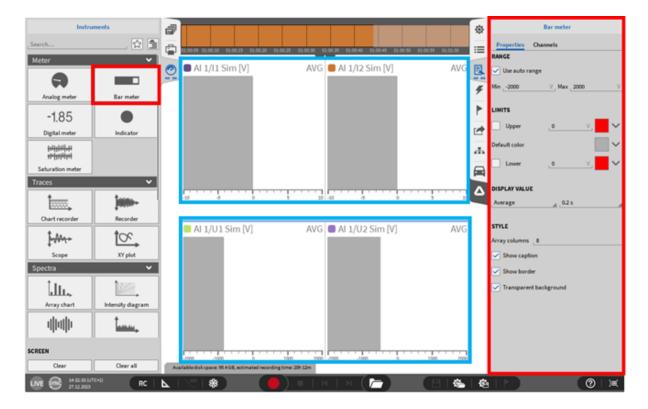


Fig. 8.29: Bar Meter - overview

The Bar meter is an additional tool to show the user the measurement value of a channel. The following properties are available:

- Range: Allows the user to define the range of the Bar meter. There is also the option to auto range the meter based upon the input channels range setting.
- Limits: Allows users to color the Bar meter fill color based on different limit values. This helps in identifying signals which have hit a limit when the display is very "busy".
- Display Value: The meter shows either the actual channel value or the Average, RMS, ACRMS, Min, Max, Peak2Peak value at a user defined time interval of 0.1 s, 0.25 s, 0.5 s, 1.0 s, Delay, Sat (saturation).
- Style: The user can specify the number of columns for a Bar meter cluster if several channels are selected.

Selection of a transparent or untransparent background.

• Layer: Moves the Instrument in front of or behind another object (only applicable in *Design Mode*).

Note: Up to 96 channels can be assigned to one single Bar Meter.

8.7 Indicator

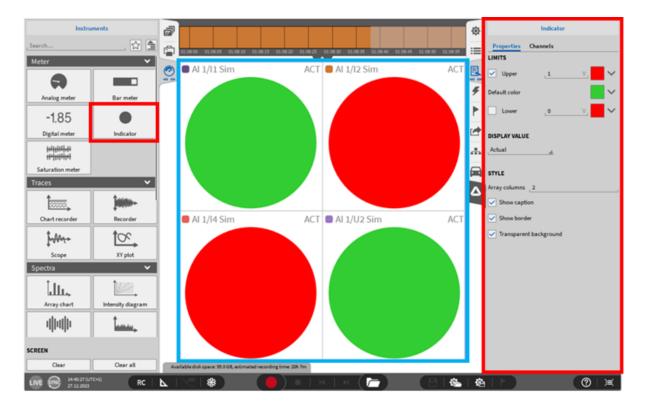


Fig. 8.30: Indicator – overview

The Indicator can be used for a quick status overview feedback. Depending on the current channels' value, the Indicator changes its color. The following Indicator properties can be configured:

- Limits: The user can define a default color for the indicator as well as upper and lower limit values and colors
- Display Value: Assigns the Indicators' color to the actual channel value or to the Average, RMS, ACRMS, Min, Max, Peak2Peak channel value at a user defined rate in seconds, Delay, Sat (saturation).
- Style: The user can specify the number of columns for an Indicator cluster if several channels are selected

Selection of a transparent or untransparent background.

• Layer: Moves the Instrument in front of or behind another object (only applicable in Design Mode)

Note: Up to 96 channels can be assigned to one single Indicator.

8.8 Table instrument

Instru	uments	8					٢	Table
earch	소 🚖	00:13:2600:13:280	013-3000-13-3200-13-3400-13-3600-13-3600	13400:134200:134400:134600:134800:135000:135200:13			=	Properties Channels
Array chart	Intensity diagram					A LOVA Circ D.O.		DATA FORMAT
	1	Time	00:14:24.4346000	AI 2/2 Sim [V] -6,472135	Al 2/3 Sim [V]	Al 2/4 Sim [V]	R.	ime Auto
վիվի	1 1	40.00	00:14:24.4345000	-5,656853		-6.190399		
ahah.	land,	(00:14:24.4344000	-4,702281	1,049600		4	lumber precision , 6
Spectrogram	Spectrum analyzer		00:14:24.4343000	-3,631923				
uxiliary	× .		00:14:24.4342000	-2,472135				AYOUT
uxiliary	`		00:14:24.4341000	-1,251475			r	olumns , Equal width
	AT		00:14:24.4340000	0.008008				
	AT		00:14:24.4339000	1.251475				TATISTICS
1	~		00:14:24.4338000	2.472135		-6 188159		All a
Image	Text		00:14:24.4337000	3.631923				
utomotive	×		00:14:24.4336000	4.702281	1.062400		- I.	Show only statistics data
			00:14:24.4335000	5.656853	1.064000	-6.187286		
	GPS		00:14:24.4334000	6.472135				TYLE
Part of the local distribution of the local			00:14:24.4333000	7.128051	1.067200	-6.186560		 Transparent background
BirdsEye	GPS plot		00:14:24.4332000	7,608451	1,068800		⇔	Tanaparene background
	i i i		00:14:24.4331000	7.901506	1.070399	-6.185919	_	
Por la			00:14:24.4330000	7.999999	1.072000	-6.185686		
600			00:14:24.4329000	7,901506	1.073600	-6.185279		
GPS quality			00:14:24.4328000	7,608451	1.075200			
liscellaneous	×		00:14:24.4327000	7,128051	1.076800	-6,184639		
Polar	Audio player	Time	08:14:24.0000000	Al 2/2 Sim [V] [-8,8] AVG=-1.56125e-17 RMS=5.51042 [-8,8] AVG=-3.81639e-17 RMS=5.55699	Al2/3 Sim [V] [-8,7.9984] AVG=-0.0008 RMS=0.4286 [-7.9984,8] AVG=0.0008 RMS=0.443181	Al 2/4 Sim [V] [-4.79968,-1.6] AVG=-3.19984 RMS=3.20099 [-1.59968,1.6] AVG=0.00016 RMS=0.0886361		
- O	No.		00:14:22.0000000	[-8,8] AVG=1.73472e-18 RMS=5.52963	[-8,7.9984] AVG=-0.0008 RMS=0.430602	[1.60032,4.8] AVG=3.20016 RMS=3.20132		
				[-8,8] AVG=-1.38778e-17 RMS=5.49738	[-7.9984,8] AVG=0.0008 RMS=0.444566	[4.80032,8] AVG=6.40016 RMS=6.40078		
Control	ModalTest			[-8,8] AVG=-1.04083e-17 RMS=5.54733	[-8,7.9984] AVG=-0.0008 RMS=0.431279	[4.8,7.99968] AVG=6.39984 RMS=6.40042		
A			00:14:19.0000000	[-8,8] AVG=-3.29597e-17 RMS=5.54554	[-7.9984,8] AVG=0.0008 RMS=0.4463	[1.6,4.79968] AVG-3.19984 RMS-3.20108		
Įυ,	<u></u>		00:14:18.0000000	[-8,8] AVG=-1.21431e-17 RMS=5.49626	[-8,7.9984] AVG0.0008 RMS-0.432903	[-1.6,1.59968] AVG0.09016 RMS-0.0865806		
_				[-8,8] AVG=-1.38778e-17 RMS=5.53139	[-7.9984,8] AVG=0.8008 RMS=0.446968	[-4.8,-1.60032] AVG=-3.20016 RMS=3.20141		
Nyquist	Orbit			[-8,8] AVG=1.04083e-17 RMS=5.55686	[-8,7.9984] AVG=-0.0008 RMS=0.434362	[-8,-4.88032] AVG=-6.40016 RMS=6.40075		
D				[-8,8] AVG=-1.9082e-17 RMS=5.50905	[-7.9984,8] AVG=0.0008 RMS=0.448779	[-7.99968,-4.8] AVG=-6.39984 RMS=6.40047		
≈	5.B			[-8,8] AVG=-3.46945e-18 RMS=5.51043	[-8,7.9984] AVG=-0.0008 RMS=0.435103	[-4.79968,-1.6] AVG=-3.19984 RMS=3.20102		
				[-8,8] AVG=6.93889e-18 RMS=5.55701	[-7.9984,8] AVG=0.0008 RMS=0.449762	[-1.59968,1.6] AVG=0.00016 RMS=0.0899523		
Dutput channel	Power			[-8,8] AVG=6.93889e-18 RMS=5.52958	[-8,7.9984] AVG=-0.0008 RMS=0.437113	[1.60032,4.8] AVG=3.20016 RMS=3.20135		
					[-7.9984,8] AVG=0.0008 RMS=0.451151	[4.80032,8] AVG=6.40016 RMS=6.4008		
				[-8,8] AVG=-2.42861e-17 RMS=5.54734	[-8,7.9984] AVG=-0.0008 RMS=0.437796	[4.8,7.99968] AVG=6.39984 RMS=6.40844		
Table	Video			[-8,8] AVG=1.21431e-17 RMS=5.54562	[-7.9984,8] AVG=0.0008 RMS=0.452894	[1.6,4.79968] AVG=3.19984 RMS=3.20112		
Table	video			[-8,8] AVG=5.20417e-18 RMS=5.49628	[-8,7.9984] AVG=-0.0008 RMS=0.439427	[-1.6,1.59968] AVG=-0.00016 RMS=0.0878854		
					[-7.9984,8] AVG=0.0008 RMS=0.453565	[-4.8,-1.60032] AVG=-3.20016 RMS=3.20145		
REEN			00:14:06.0000000	[-8,8] AVG=-2.42861e-17 RMS=5.55686	[-8,7.9984] AVG=-0.0008 RMS=0.440895	[-8,-4.80032] AVG=-6.40016 RMS=6.40077		
	Clear all	Available disk second 3	01.7 GB, estimated recording time: 4d 22					
Clear	Clear all			n (uncompressed)				
Clear		RC		in (uncompressed)				0

Fig. 8.31: Table instrument - overview

The Table instrument displays measurement data in tabular format, with individual columns for each signal and one for the time axis. The following configuration options are available:

- Time Format: Choose between Auto, Absolute time, or Relative time.
- Number Precision: Set the number of decimal places displayed.
- Column Layout: Select from Equal width, Dynamic distribution, or Stable distribution.
- Statistics Display: Enable Show only statistics data to display statistical values instead of raw data. Use the dropdown menu to select specific statistics. Note: Statistics Recording (*Triggered Events*) must be enabled during acquisition for this feature to work.
- Style: Choose between a transparent or non-transparent background.

Note: Up to 8 channels can be assigned to one single Table instrument.

8.9 Image instrument

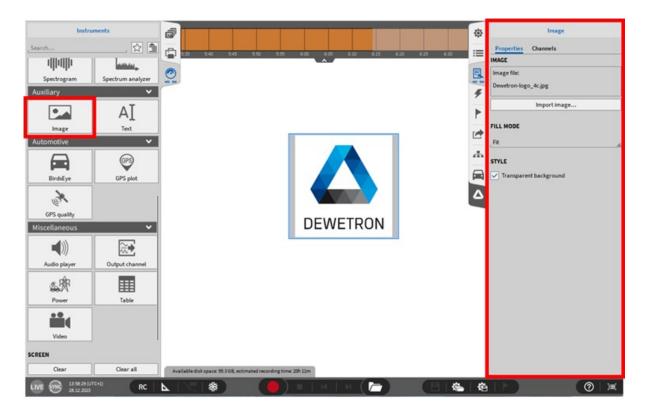


Fig. 8.32: Image Instrument – overview

This feature allows the user to add an image to the measurement screen, i.e. a picture of the device under test or the company logo. The data path can be selected via the Instrument Properties:

- Source: Browse for the desired image file
- Fill Mode: Select different modes to adjust the image file to the Instrument size
- Style: Selection of a transparent or untransparent background.
- Layer: Moves the Instrument in front of or behind another object (only applicable in *Design Mode*).

Note: An image file (.jpeg or .png) can also be copied and pasted directly from the Windows Explorer into the OXYGEN measurement screen (see Fig. 8.33).

		¢ ≣
		0
		Ξ.
sschneiden		Ŧ
id kopieren Verschieben Kopieren Li	CTRL+V	
rknüpfung einfügen nach • nach • Organisi		
a (D:) > Neuer Ordner	DEWETRON	đ
DEWETRON Dewetron-logo.p ng		(
	Available disk space 2 6 GB, estimated recording time: 3h 28m	
		×

Fig. 8.33: Pasting an image file to the measurement screen

8.10 Text instrument

Search	nents			Test Protecties Oceannels TEXT
Meter				· i b pre x _{ub} x ^{up}
Analog meter	Bar meter			-b=Date: #(date)=/b=-br/>= Measurement Start: #(mstart)=br/> Measurement Stort: #mstop
-1.85			۴	Time: 11:33:28.090
Digital meter	Indicator			
<u>1+12111-1</u> 11+ <u>12111-1</u>			di.	FORMAT
Saturation meter Traces	~	Date: 31.01.2025	E	Size Auto
1	1000-			Allow advanced formatting
Chart recorder	Recorder			
ĴuMu+	tor,	Measurement Start: 31.01.2025 11:30:11		Horizontal Alignment
Scope	XY plot	Measurement Stop: 31.01.2025 11:33:28		Vertical Alignment
أبالي	1229	Measurement Stop. 51.01.2025 11.55.20		
Array chart	Intensity diagram			Time
վիսին	Lunu,			Date Measurement Time
Spectrogram Auxiliary	Spectrum analyzer			Measurement Start
	AI			Measurement Stop STYLE
Image	Test			Transparent background
Automotive	•	Tene 13.0440 (MTCH) Dele 11.01.2005		
	(PS)			
SCREEN				
Clear	Clear all	Asalala 🐔 kal2 di, estimated recording time 380 20m RC 🔜 🖉 🕷 🛑 📄 K K K hr	. 6	

Fig. 8.34: Text instrument – overview

This feature allows the user to create customized text items on the measurement screen. Header data, time, data and the measurement time can also be displayed in the Text Box. For a detailed description how to display header data in the text box refer to *Header data*, for the other features see the next section. The following Instrument Properties are available:

• Text: the desired text must be entered there. The entered text is automatically resized to fit within the boundaries of the text box. To change the color of the text, left click onto or touch

the *Color* square to bring up the color selection palette. The style can be adjusted to **Bold** and *Italic*. Furthermore, the horizontal and vertical alignment can be changed. The advanced text formatting options (see (4) in Fig. 8.34) for formatting only certain words or characters instead of the entire text must be activated via the checkbox (see (3) in Fig. 8.34).

- Style: Selection of a transparent or untransparent background.
- Layer: Moves the Instrument in front of or behind another object (only applicable in *Design Mode*).

Note: A text can also be copied and pasted directly to the OXYGEN measurement screen (see Fig. 8.35).

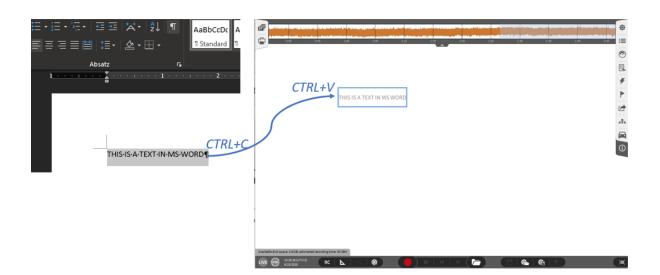


Fig. 8.35: Pasting a text to the measurement screen

Show Time, Date, Measurement Time

The Text instrument can also be used to show time, date or the elapsed time since measurement start (recording start) on the measurement screen. It is also possible to select the start and end time of the measurement. There are two possibilities available:

- 1. The time and date display in the lower left corner can directly be dragged and dropped on the measurement screen (see (1) in Fig. 8.34). A Textbox will be created automatically with the according time and date.
- 2. In the instrument properties the time, date and measurement time can again dragged and dropped into the text field (see 2) in Fig. 8.34) or be added with a double click on the respective element.

Note: The text in front of the *#*-sign can be changed individually.

8.11 Scope

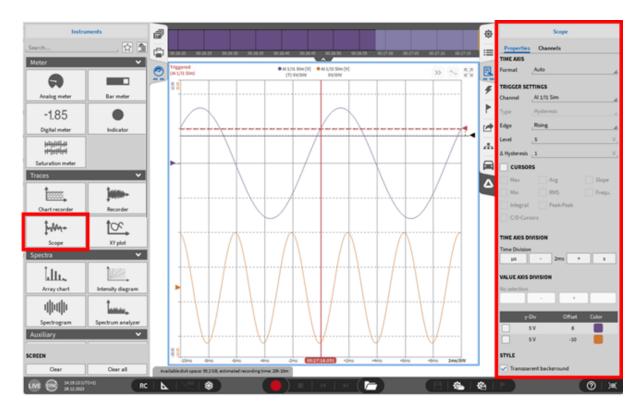


Fig. 8.36: Scope instrument – overview

This instrument affords the user the analysis options of a scope.

Note: Up to 8 channels can be assigned to one single scope.

Instrument properties

- Trigger settings:
- In the *Channel* selection, the user can select the trigger channel. Any channel that is displayed on the scope can be selected.
- In the *Edge* selection, the user can select if the selected signal shall be triggered on a *Rising* or on a *Falling* edge. The difference between the two modes is shown in Fig. 8.37 for a 1 Hz sine wave that has an amplitude of 1.

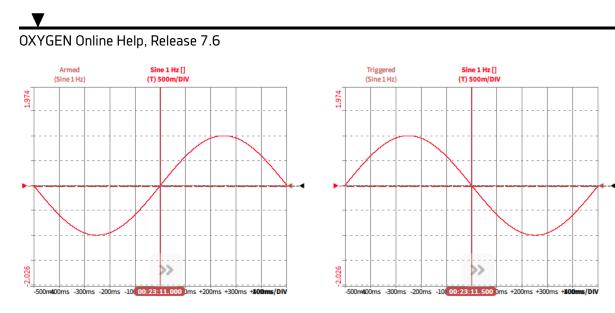


Fig. 8.37: Trigger on a *Rising* (left) and on a *Falling* (right) edge

• In the *Level* selection, the user can define the level of the trigger. The level can also be set with the *Level* cursor (see Fig. 8.36) and must be within the signal range. Fig. 8.38 shows a 1 Hz sine wave with an amplitude of ±1 which is triggered with a rising edge on level 0 and level +0.5.

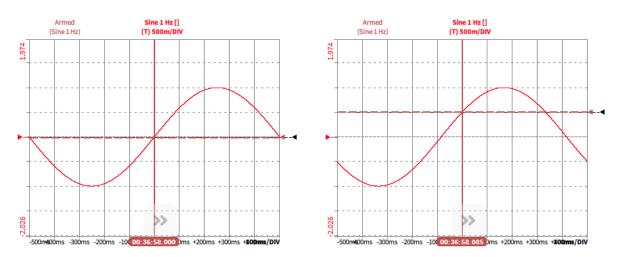


Fig. 8.38: Rising trigger edge with level 0 (left) and level +0.5 (right)

In the Δ Hysteresis selection, the user can define a level the signal must pass before a new trigger event occurs. Setting a hysteresis level avoids unwanted trigger events that may occur caused by noise around the trigger level. The Δ Hysteresis level can also be set with the Hysteresis cursor (see Fig. 8.36).

- If the signal is triggered on a *Rising* edge, the range of the Δ *Hysteresis* level can be set from [0 ... (max_A + TL)].
- If the signal is triggered on a *Falling* edge, the range of the ∆ *Hysteresis* level can be set from [0 ... (max_A TL]].

Note: max_A: maximum signal Amplitude TL: selected Trigger Level

- Cursors: Select the desired values that shall show up when the cursors are activated. For a detailed description of the cursors refer to *Activate cursors*.
- Time Axis Division: Change the scaling of the X-axis per division
- Value Axis Division: Change the scaling of the displayed signals individually per division
- Layer: Moves the Instrument in front of or behind another object (Only applicable in *Design Mode*)
- Style:
 - Selection of a transparent or untransparent background.
 - Line Width selection from 1...10
- The Offset Cursors (see Fig. 8.36) can be used to displace the displayed signals vertically. Using this function will not affect the phase accuracy.

8.12 Spectrum analyzer

The FFT-Instrument provides the user with the ability to analyze data in real time within the frequency domain.

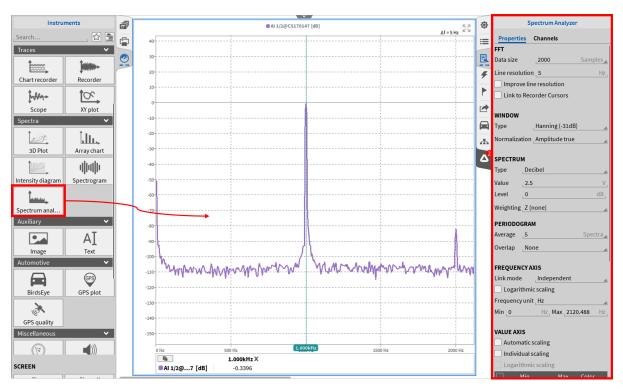


Fig. 8.39: Spectrum Analyzer - overview

The main properties of the instrument are FFT, Window, Spectrum, Periodogram, Frequency Axis, Value Axis, Markers, Reference curve, Style and Cross Hairs.

Both time domain and frequency domain channels can be added to the spectrum analyzer. Frequency domain channels are for example the amplitude channel created by a FFT channel from the basic math options.

V

OXYGEN Online Help, Release 7.6

8.12.1 Assignment of Frequency Domain Channels

Mathematical frequency channels that are calculated using the FFT math (see FFT channels) can be assigned and displayed to the Spectrum Analyzer as well. The Amplitude channel (called Channel_Name_Amp per default) and the Phase channel (called Channel_Name_Phi per default) can be assigned to the Spectrum Analyzer but no complex FFT channels (called Channel_Name_Cpx per default).

Note:

- Time domain channels and frequency domain channels cannot be assigned to the same Spectrum Analyzer but only to separate ones.
- If frequency domain channels are assigned to the Spectrum Analyzer, the Instrument Properties are reduced to the Frequency axis and Value Axis settings (see Fig. 8.40). For details, refer to Additional instrument properties.

Spectrum analyzer						
Properties	Channels					
FREQUENCY AXIS						
Link mode	Independent 🦽					
Logarithm	ic scaling					
Frequency uni	t Hz 🦽					
Min 10	Hz, Max 5000 Hz,					
VALUE AXIS						
Automatic scaling						
Individual scaling						
Logarithmic scaling						
🗌 Min	Max Color					
O	1.176333e-3					

Fig. 8.40: Instrument Properties of the Spectrum Analyzer if Frequency Domain channels are assigned

8.12.2 Frequency Axis Settings

The unit of the X-axis is Hertz [Hz] per default (see (1) in Fig. 8.41). The unit can be changed to Cycles Per Minute [CPM] which is defined as [Hz] * 60 (see (2) in Fig. 8.41). The axis' minimum can be freely defined (see (3) and (4) in Fig. 8.41). The scaling can optionally bet set from linear to logarithmic scaling (see (5) in Fig. 8.41).

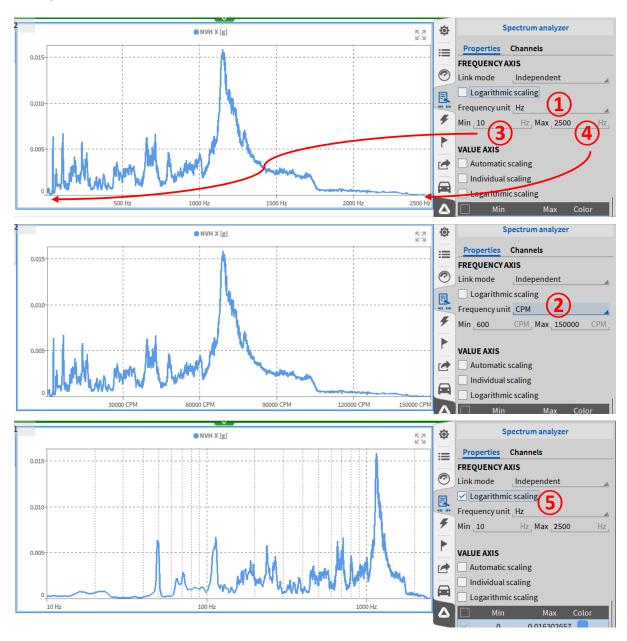


Fig. 8.41: Frequency axis settings

8.12.3 Assignment of Time Domain Channels

If analog channels that represent a time domain signal are assigned to the Instrument, the FFT is calculated according to the following formula:

$$Y_k = \sum_{n=0}^{N-1} X_n e^{\frac{-i2\pi kn}{N}}; \quad k = 0 \dots N - 1$$

Xk... (complex) input signal

Yk... complex Fourier Transform of Xk

N... number of samples

Depending on the spectrum to be plotted, the complex Fourier Transform Y_k is used for further calculations. For continuative information, refer to *Section Spectrum*.

Note:

- Up to 8 channels can be assigned to one single Spectrum analyzer.
- The Spectrum analyzer provides the zooming option as well. For the detailed description of the zooming function, refer to *Pinch/Scroll zoom feature*.
- The user can easily export the currently displayed FFT-spectrum via pressing **CTRL+C** and paste it into an Excel file or Notepad window
- Peak Hold function: To facilitate the read off from local maxima, the user can press the **SHIFT** key. This makes the cursor remain at local maxima.

8.12.4 Assignment of Frequency Domain Channels

Mathematical frequency channels that are calculated using the FFT math (see *FFT channels*) can be assigned and displayed to the Spectrum Analyzer as well. The Amplitude channel (called *Channel_Name_Amp* per default) and the Phase channel (called *Channel_Name_Phi* per default) can be assigned to the Spectrum Analyzer but no complex FFT channels (called *Channel_Name_Cpx* per default).

Note:

- Time domain channels and frequency domain channels cannot be assigned to the same Spectrum Analyzer but only to separate ones.
- If frequency domain channels are assigned to the Spectrum Analyzer, the Instrument Properties are reduced to the Frequency axis and Value Axis settings (see Fig. 8.42). For details, refer to *Additional instrument properties*.

Spectrum analyzer						
Properties	Channels					
FREQUENCY	AXIS					
Link mode	Independent					
Logarithm	ic scaling					
Frequency un	it Hz					
Min 10	Hz Max 5000		Hz			
VALUE AXIS Automatic scaling Individual scaling						
Logarithmic scaling						
🗌 Min	Мах	Color				
✓ 0	1.176333e-3					

Fig. 8.42: Instrument Properties of the Spectrum Analyzer if Frequency Domain channels are assigned

8.12.5 FFT properties for Time Domain Channels

The desired *Data size* (i.e. the number of samples in time domain used for the calculation of one spectrum which is denoted with *N* in the upper formula) can be edited here. The data size is freely definable within a range from 42 to 1048576 (2^{20}) samples. The default settings are

1024 (2^{10}), 2048 (2^{11}), 4096 (2^{12}), 8192 (2^{13}), 16384 (2^{14}), 32768 (2^{15}), 65536 (2^{16}) 131072 (2^{17}) and 262144 (2^{18}) samples.

FFT					
Data size	2000	Samples			
Line resolution	5	Hz			
Improve line resolution					
Link to Recorder Cursors					

Fig. 8.43: FFT property of the spectrum analyzer instrument

The Line resolution relates to the sample rate and the Data size:

 $Line Resolution = \frac{\text{Samplerate}}{\text{Window size}} [Hz]$

The radio button *Improve line resolution* will enable zero-padding. For detailed information, refer to *Additional information: improve line resolution (Enable zero-padding)*.

Note:

- If channels with different sample rates are displayed in one Spectrum analyzer:
- The *Line resolution* is calculated for each sample rate individually and cannot be edited in the Instrument Properties. Thereby, the number of plotted FFT bins is the same for each signal but the FFT resolution is different.
- Zero-padding (Improve line resolution) cannot be activated.
- Note that changing the *Data size* will affect the *Line resolution*. Therefore, the line resolution is within a range from $\frac{\text{Samplerate}}{2^{20}}$ to $\frac{\text{Samplerate}}{42}$ samples.
- If *Improve line resolution* is de-selected, the number of calculated FFT bins is equal to the *Data size*. If *Improve line resolution* is selected, the number of calculated FFT bins is always higher than the number of data samples.
- The number of plotted FFT bins is always $trunc(\frac{\text{Number of calculated frequency bins}}{2}) + 1$. The first line is plotted @ 0 Hz and the last line is plotted @ $\frac{\text{Samplerate}}{2}$ Hz. If logarithmic frequency axis scaling is selected, the 0 Hz line will not be plotted, because the common logarithm is not defined for 0.

Section Window

The Type and Normalization of the window function can be edited here.

Fig. 8.44: Window settings for the spectrum analyzer

Window type

The Spectrum analyzer offers the usage of 7 different window functions (N denotes the Window size in samples and corresponds to the *Data size*):

• Hanning window

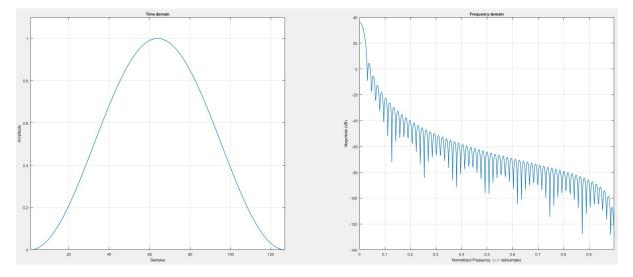
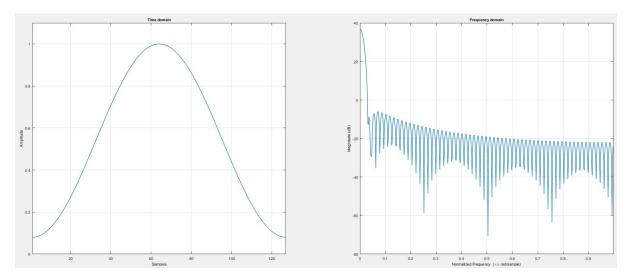
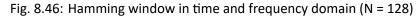
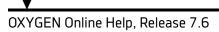




Fig. 8.45: Hanning window in time and frequency domain (N = 128)

$$w(n) = \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{N-1}\right) \right]; \quad n = 0 \dots N - 1$$

Hamming window



$$w(n) = \alpha - \beta \cos\left(\frac{2\pi n}{N-1}\right); \quad n = 0 \dots N-1$$

 $\alpha = 0.54$

$$\beta$$
... $1 - \alpha$

• Rectangular window

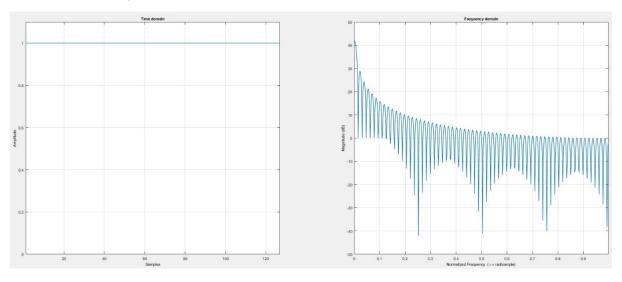
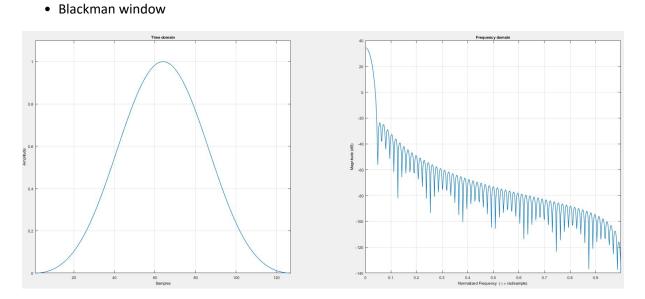
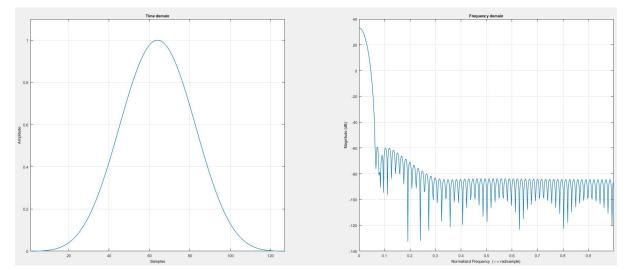


Fig. 8.47: Rectangular window in time and frequency domain (N = 128)

$$\hat{w}(n) = 1; \quad n = 0 \dots N^{-1}$$

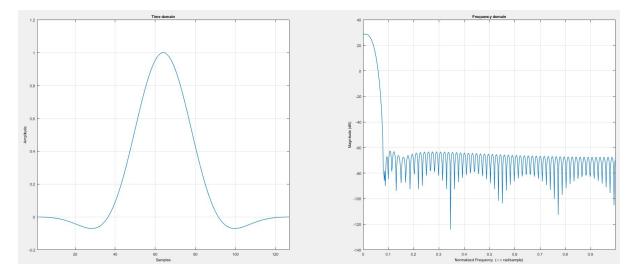



Fig. 8.48: Blackman window in time and frequency domain (N = 128)

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right); \quad n = 0 \dots N-1$$

$$a0 = 0.42$$

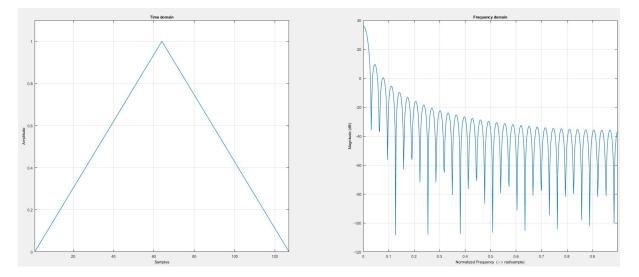
$$a1 = 0.5$$


$$a3 = 0.08$$
Blackman-Harris window

Blackman-Harris window in time and frequency domain (N = 128)

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right) - a_3 \cos\left(\frac{6\pi n}{N-1}\right); \quad n = 0 \dots N - 1$$

- a0 = 0.35875
- a1 = 0.48829
- a2 = 0.14128
- a3 = 0.01168
- Flat-Top window


Flat-Top window in time and frequency domain (N = 128)

$$w(n) = a_0 - a_1 \cos\left(\frac{2\pi n}{N-1}\right) + a_2 \cos\left(\frac{4\pi n}{N-1}\right) - a_3 \cos\left(\frac{6\pi n}{N-1}\right) + a_4 \cos\left(\frac{8\pi n}{N-1}\right); n = 0 \dots N - 1$$

a0 = 0.21557895
a1 = 0.41663158
a2 = 0.277263158

a3 = 0.083578947

a4 = 0.006947368

Bartlett window

Bartlett window in time and frequency domain (N = 128)

$$w(n) = 1 - \left| \frac{n - \frac{N-1}{2}}{\frac{N-1}{2}} \right|$$

The following table will give an overview and recommendations about the usage of the different window functions.

Note: This table is only a matter of recommendation and makes no claim to be complete or correct.

Tunctions (Source)	
Signal Content	Window
Sine wave or combination of sine waves	Hanning
Sine wave (amplitude accuracy is important)	Flat Top
Narrow-band random signal (vibration data)	Hanning
Broadband random (white noise)	Rectangular
Closely spaced sine waves	Rectangular, Hamming
Unknown Content	Hanning
Accurate single tone amplitude measurements	Flat Top

Table 8.2: Recommendation about the usage of different window functions (Source)

The following figure compares the different window functions in time domain:

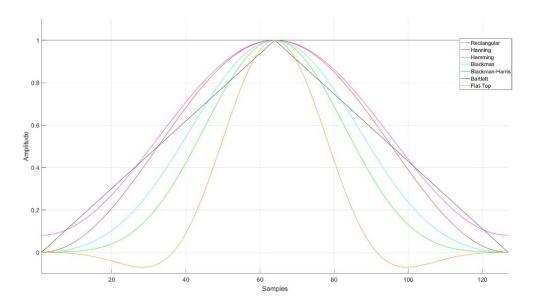


Fig. 8.49: Comparison of the window functions in time domain (N = 128)

The following table summarizes the two most important characteristics of the different window functions. The *Main Maximum Width* describes the single-sided width of the main maximum as number of FFT bins. The *Main Maximum Width* in Hz is the product of *Main Maximum Width* and *Line resolution*. The *Max. Side Lobe Level* denotes the damping of the first side lobe compared to the main maximum in decibel.

Window function	Main Maximum Width	Max. Side Lobe Level [dB]
Hanning	2	-31
Hamming	2	-43
Rectangular	1	-13
Blackman	3	-58
Blackman-Harris	4	-92
Flat-Top	5	-68
Bartlett	2	-27

Table 8.3: Properties of the window functions

Normalization

As the usage of a window function causes a decrement of the signals' amplitude and power, the user can select between *None, Amplitude True* and *Power True* Normalization.

- None: The spectrum will not be normalized, and the amplitude and the power error will remain
- *Amplitude True:* The damping of the signal amplitude caused by the window function will be compensated. The power loss will remain. The correction happens according to the following

formula:

$$S_{\mathsf{AmpCorr}\ k} = S_k * \left[\frac{N}{\sum_{k=1}^N W_k} \right]$$

• *Power True:* The Power loss caused by the multiplication with the window function will be compensated and the amplitude error will remain. The correction happens according to the following formula:

$$S_{\text{PowCorr }k} = S_k * \sqrt{\frac{N}{\sum_{k=1}^N W_k^2}}$$

- Sk... Un-normalized signal at position k
- N... Length of the Window function
- Wk...Value of the window function at position k
- A detailed example for the necessity to normalize FFT spectra can be found in Additional information: normalization of FFT Spectra.

Note: The normalization is applied to the signal in time domain.

Section Spectrum

In the *Spectrum* section, the user can select the type of spectrum plotted in the Spectrum analyzer. In the following section, the available spectra and their formula are listed.

SPECTRUM	SPECTRUM								
Туре	Decibel RMS								
Value	10	V							
Level	0	dB							
Weighting	Z (none)								

Fig. 8.50: Spectrum settings for the Spectrum Analyzer

• Amplitude: Plots the default amplitude spectrum normalized to the number of FFT lines according to the following formula:

$$A_k = \frac{1}{N} \sqrt{\text{Re} \{Y_k\}^2 + \text{Im} \{Y_k\}^2}; \quad k = 0 \quad [\text{Unit}]$$

$$A_k = \frac{2}{N} \sqrt{\text{Re} \{Y_k\}^2 + \text{Im} \{Y_k\}^2} ; \quad k = 1 \dots N \quad [\text{Unit}]$$

• Amplitude RMS: Plots the RMS amplitude spectrum by dividing the Amplitude spectrum by .

$$A_{\text{RMS }k} = \frac{A_k}{\sqrt{2}}; \qquad k = 1 \dots N \quad [\text{Unit}]$$

• Amplitude²: Plots the squared amplitude spectrum by squaring the Amplitude spectrum

$$A_{\mathsf{sq}\ k} = A_k^2; \qquad k = 1 \dots N \quad [(\mathsf{Unit})^2]$$

 Decibel: Plots the logarithmic Amplitude spectrum referred to a freely definable reference level A_{Ref}. The reference value A_{ref} can be edited in the Value section and its corresponding level can be defined in the Level section.

$$L_{A\,k} = 20 * \log_{10}\left(\frac{A_k}{A_{\text{Ref}}}\right); \qquad k = 1 \dots N \quad [\text{dB}]$$

Decibel RMS: Plots the logarithmic Amplitude RMS spectrum referred to a freely definable reference level A_{Ref}. The reference value A_{ref} can be edited in the Value section and its corresponding level can be defined in the Level section.

$$L_{A \text{ RMS } k} = 20 * \log_{10} \left(\frac{A_{\text{RMS } k}}{A_{\text{Ref}}} \right); \qquad k = 1 \dots N \quad [\text{dB}]$$

• Decibel Max Peak: Plots the logarithmic Amplitude spectrum referred to the highest occurring value in the Amplitude spectrum. Thus, the highest occurring value corresponds to 0 dB.

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_k}{\max\{A_k\}} \right); \qquad k = 1 \dots N \quad [\mathsf{dB}]$$

Decibel V-RMS: Plots the logarithmic Amplitude spectrum referred to 1 [Signal Unit] (1 V (RMS) is a common reference level for voltage and corresponds to 0 dBV)

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_{\text{RMS}}}{1} \right); \qquad k = 1 \dots N \quad [\text{dB}]$$

• Decibel u-RMS: Plots the logarithmic Amplitude spectrum referred to $\sqrt{0.6}$ [Signal Unit] ($\sqrt{0.6} = 0.775$ V (RMS) is a common reference level for voltage and corresponds to 0 dBu. 0.775V is the voltage that converts 1 mW electrical power on a 600 Ω resistance)

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_{\text{RMS}}}{\sqrt{0.6}} \right); \qquad k = 1 \dots N \quad [\text{dB}]$$

 Sound Pressure Level: Plots the logarithmic Amplitude spectrum referred to 20µ [Signal Unit] (20 µPa is the common reference level for sound pressure in air and corresponds to 0 dB)

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_{\text{RMS}}}{20} \right); \qquad k = 1 \dots N \quad [dB]$$

Sound Pressure Level (Water): Plots the logarithmic Amplitude spectrum referred to 1μ [Signal Unit] (1 μPa is the common reference level for sound pressure in water and corresponds to 0 dB)

$$L_{A \max k} = 20 * \log_{10} \left(\frac{A_{\text{RMS}}}{1} \right); \qquad k = 1 \dots N \quad [\text{dB}]$$

 PSD: The Power Spectral Density (PSD) is based on the magnitude squared spectrum (M_{sq}) which differs from the amplitude squared spectrum (A_{sq}) insofar that the magnitude squared spectrum is only a one-sided spectrum.

$$M_{sq \ k} = \text{Re} \{Y_k\}^2 + \text{Im} \{Y_k\}^2; \qquad k = 1 \dots N \qquad [(\text{Unit})^2]$$

$$\mathsf{PSD}_k = \frac{1}{N^2} * \frac{1}{\mathsf{df}} * M_{\mathsf{sq}\;k}; \qquad \mathsf{with\;df} = \; \frac{\mathsf{Samplerate}}{N} \quad \left[\left(\mathsf{Unit}\right)^2 / \mathsf{Hz} \right]$$

• PSD-TISA: plots the Time Integrated Squared Amplitude (TISA) PSD

$$PSD - TISA_k = \frac{1}{N} * \operatorname{dt} * M_{\operatorname{sq} k}; \qquad k = 1 \dots N, \quad \operatorname{dt} = \frac{1}{\operatorname{Samplerate}} \quad \left[(\operatorname{Unit})^2 s \right]$$

• PSD-MSA: plots the Mean Squared Amplitude (MSA) PSD

$$PSD - MSA_k = \frac{1}{N^2} * M_{\operatorname{sq} k}; \qquad k = 1 \dots N \qquad \left[(\operatorname{Unit})^2 \right]$$

• PSD-SSA: plots the Sum Squared Amplitude (SSA) PSD

$$PSD - SSA_k = \frac{1}{N} * M_{\operatorname{sq} k}; \qquad k = 1 \dots N \quad [(\operatorname{Unit})^2]$$

Note: PSD, PSD-TISA, PSD-MSA and PSD-SSA are different scalings of the same spectral content and differ in the physical unit.

• Phase: Plots the phase spectrum from -180° ... +180°.

$$\varphi_k = \tan^{-1} \frac{Im\{Y_k\}}{Re\{Y_k\}}; \quad k = 1 \dots N \quad [^\circ]$$

 Phase unwrapped: Plots the unwrapped phase spectrum to avoid discontinuities from -900° ... +900°.

$$\varphi_{k,unwrapped} = \tan^{-1} \frac{Im\{Y_k\}}{Re\{Y_k\}}; \qquad k = 1 \dots N \quad [^{\circ}]$$

• Phase radiant: Plots the phase spectrum from - ... +.

$$\varphi_k = \frac{\varphi_k}{360^\circ} 2\pi; \quad k = 1 \dots N \quad [rad]$$

Phase unwrapped (radiant): Plots the unwrapped phase spectrum to avoid discontinuities from

 ... +..

$$\varphi_{k, unwrapped} = \frac{\varphi_{k, unwrapped}}{360^{\circ}} 2\pi; \quad k = 1 \dots N \quad [rad]$$

• Weighting: allows you to apply frequency-dependent weighting to the amplitudes. The default setting is Z (none). There are also sound level weightings according to A, B, C, and D.

Section Periodogram

The usage of a window function damps the signal information at the window edges and emphasizes the signal information in the middle of the window function. If the signal is stationary, the variance of its spectrum rises. This problem can be avoided with a periodogram. If the option *Periodogram* is selected, the spectrum is calculated for overlapping signal parts and averaged afterwards. This procedure reduces the variance, but the spectral resolution is degraded as well.

- In the *Average* selection, the user can select the number of spectra that shall be used for the mean value calculation. 2, 3, 4, 5, 8 or 10 spectra can be used for the mean value calculation.
- In the Overlap selection, the user can select how much the single spectra used for the mean value calculation shall overlap in the time domain. The user can select an overlapping factor of 0 %, 50 %, 75 % 80 % or 90 %.
- The Periodogram calculation is exemplified in Additional information: calculation of a Periodogram.

Additional instrument properties

- Frequency Axis: Change the scaling of the X-axis
- Value Axis: Change the scaling of the Y-axis. For quick Y-axis scaling features, refer to *Quick selection Y-axis scaling*.
- Style:
 - Selection of a transparent or untransparent background.
 - Line Width selection from 1...10
- Layer: Moves the Instrument in front of or behind another object

Note: The properties of the FFT can be changed and updated in the *PLAY* mode as well as in the *LIVE* and *REC* mode.

8.12.6 Markers

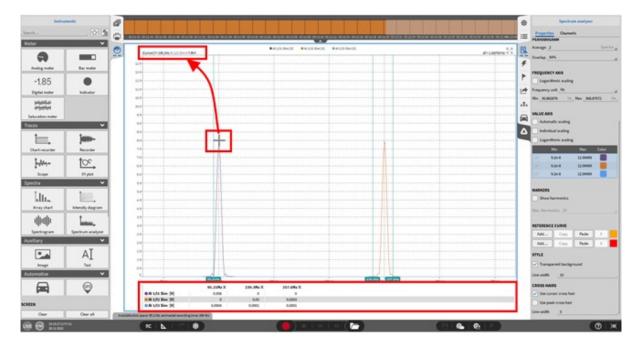


Fig. 8.51: FFT Marker - Overview

To analyze the behavior of a certain frequency line, the user can display the actual value in a table below the FFT plot. Therefore, the user must select the desired frequency line with a mouse click. Then, the selected point will show up in the table. The user can change the frequency position by moving the respective cursor across the frequency axis or with a double click on the frequency in the table. Up to five frequency lines can be displayed in the table simultaneously. While moving the mouse in the frequency plot, the actual frequency and the actual signal value of the signal next to the cursor are displayed in the upper left corner.

8.12.7 Usage Of Harmonics Cursors

Harmonics Cursors can be displayed by checking *Show Harmonics* (see 1) in Fig. 8.52). The number of harmonics can be set from 1 to 10 (see 2) in Fig. 8.52). Harmonics are marked with cursors (see 3) in Fig. 8.52) and the harmonics amplitude is displayed at the instrument's bottom (see 4) in Fig. 8.52).

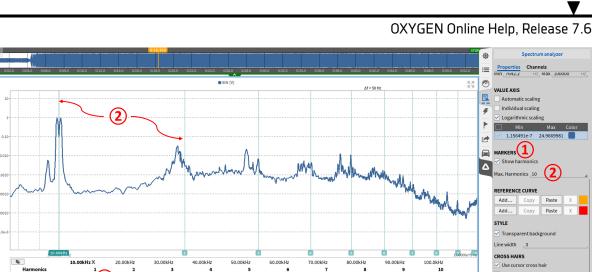


Fig. 8.52: Usage of Harmonics Cursors

0.0014

The cursor position can be changed by entering a new frequency for the first harmonic (see (5) in Fig. 8.53). It is also possible to move the first harmonic cursor with the left mouse button (see (6) in Fig. 8.53). The position of the higher harmonics is automatically adjusted.

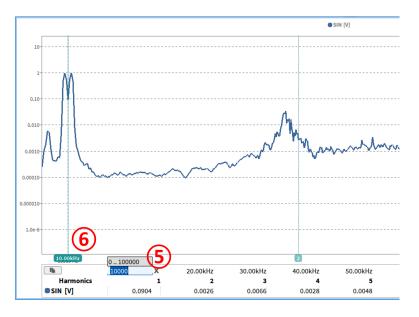


Fig. 8.53: Changing the 1st Harmonics cursor position

8.12.8 Reference Curves for the Spectrum Analyzer

The Spectrum Analyzer provides the possibility to create reference curves for threshold monitoring in the frequency domain.

An orange and a red colored reference curves can be created which will colorize the instruments' background orange or re if the signal exceeds the reference curve.

The red reference curve has a higher priority than the orange one. This means that the instruments' background will be colored red if the threshold of both reference curves will be exceeded. The colored background will be reset automatically when the threshold is decreased again.

SIN [V]

Use peak cross hair

To create a Reference curve, press the *Edit.*. button in the Reference Curve section of the Spectrum Analyzers' Instrument Properties (see Fig. 8.54).

REFERENCE CURVE									
Edit	Сору	Paste	X						
Edit	Сору	Paste	X						

Fig. 8.54: Instrument properties for Reference curves

A popup menu will open and the reference curve can be set up in table form (see Fig. 8.55). The + button can be used to add a value.

ReferenceCurve									
Сору		P	aste						
X [Hz]		Y	+						
1	20								
2000	. 0		-						
3000	-2								
4000	-5		-						
5000	5		-						

	Close	

Fig. 8.55: Table for reference curves definition

The following Fig. 8.56 and Fig. 8.57 demonstrate the steps to create an orange and a red reference curve:

- 1. Click on the *Edit...* button
- 2. Press + to add one or more lines to the table
- 3. Enter the frequency and the corresponding reference value to the table
- 4. Press Close when finished and the curve will instantly be displayed

V

OXYGEN Online Help, Release 7.6

Fig. 8.56: How to create an orange reference curve

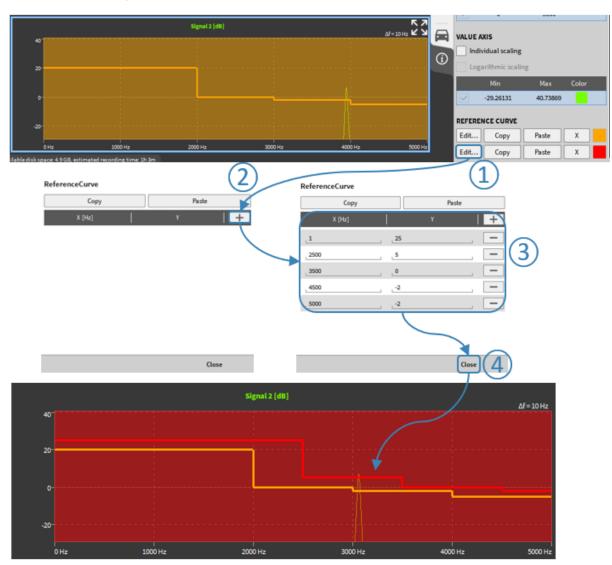


Fig. 8.57: How to create a red reference curve

The *Copy* and *Paste* buttons can be used to copy and paste the table from the orange to the red curve and vice versa (see Fig. 8.58) or to export and import a value table into / to clipboard for interacting with Excel or other 3rd party software (see Fig. 8.59).

The X button (see Fig. 8.54) can be used to delete a reference curve again.

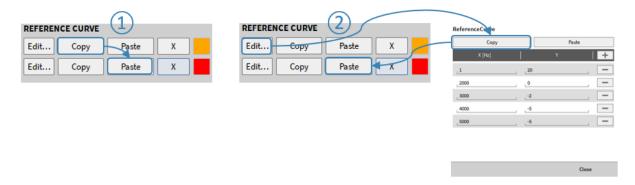


Fig. 8.58: Copy and paste settings from one reference curve to another

REFERENCE CURVE		REFERENCE CURVE
Edit Copy Paste X		Edit Paste X
Edit Copy Paste	1 X Y 2 1 20 CTRL	Edit Copy Paste X
ReferenceCurve (2)	3 2000 0 +	ReferenceCurve (2)
Copy	4 3000 -2 C	Copy Paste
X [Hz] Y +	5 4000 -5	X (Hz) Y +
2000 0	6 5000 -5	, 2000 , 0 , -
,3000 , -2 —	7	,3000
,4000 ,s , —	8	.4000
_5000	9	_5000, —
Close		Close

Fig. 8.59: Copy and paste values from/into Excel

As soon as the table has been set up, the reference curve will be displayed in the Spectrum Analyzer (see Fig. 8.60, Fig. 8.61 and Fig. 8.62).

Fig. 8.60: Reference curves without limit exceeded

Fig. 8.61: Reference curves with orange limit exceeded

Fig. 8.62: Reference curves with orange and red limit exceeded

8.12.9 Cross hairs

There are 2 options for crosshairs: *Use crosshair cursor* and *Use peak cross hair*. Additionally the Line width of the cross hair can be defined.

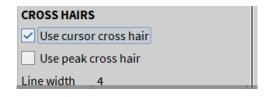


Fig. 8.63: Cross hairs option of the spectrum analyzer

With the "Follow Peak" function at the Crosshairs option, the peak value in the visible area of the FFT instrument is visually marked with the help of a crosshair (see Fig. 8.64). The cross hairs jumps automatically to the highest peak, which makes it easy to recognize.

Fig. 8.64: Follow Peak

8.12.10 Additional information for the spectrum analyzer properties

Further explanations on line resolution, normalization, and averaging are provided below.

Additional information: improve line resolution (Enable zero-padding)

If *Improve Line Resolution* is selected, zero-padding is enabled. The following paragraph explains the idea of zero-padding and its properties.

Theory of zero-padding

If zero-padding is not applied, the line resolution and thus the accuracy of a FFT depends on the length of the transformed signal and on the sample rate:

 $Line \ Resolution = \ \frac{\text{Samplerate}}{\text{Window size}} \ [Hz]$

The data size is equal to the number of FFT bins here. Thus, a higher line resolution can be achieved by reducing the sample rate or increasing the data size. Normally, a sample rate reduction cannot be

accepted due to bandwidth reasons. Increasing the data size may cause problems in Realtime applications, because the delay until an FFT is displayed increases with increasing data size. Moreover, if short signals are transformed, a data size increment is simply not possible.

Zero-padding adds zeros at the end of the signal part to be transformed and thus increases the data size artificially. Please note that the *Data size* is not any more equal to the number of FFT bins. The following example will clarify that: A 64-sample signal in time domain shall be matched to an FFT with 256 FFT bins. Therefore, 192 zeros must be added at the end of the 64-sample signal in time domain. Thus, the Line resolution can be determined according to the following formula:

$$Line Resolution = \frac{\text{Samplerate}}{Window \ size + Number \ of \ zeros} = \frac{\text{Samplerate}}{\text{Number of frequency lines}} \ [Hz]$$

In OXYGEN, the number of attached zeros can be manipulated indirectly by varying the *Data size* or the *Line resolution* in the Instrument Properties of the Spectrum analyzer (see *FFT properties for Time Domain Channels*).

In OXYGEN, the Line resolution can be selected from $\frac{\text{Samplerate}}{2^{20}}$ to $\frac{\text{Samplerate}}{\text{Window size}}$ if zero-padding is selected. If a lower line density is desired, zero-padding is not required and can be de-selected.

In the signal theory, the two most common application areas of zero-padding are the already explained increased sample density in the frequency domain and the signal enlargement to a length of 2ⁿ samples, because time signals with a length of 2ⁿ samples permit a faster FFT-computation.

Even though zero-padding increases the sample density in the frequency domain, the FFT is not more accurate if zero-padding is used. Zero-padding is only a kind of an interpolation and does not increase the resolution. This characteristic is shown in *Zero-padding* – *A practical example*. To increase the resolution, a longer signal in time domain is required.

Note: Zero-padding is applied after multiplying the signal with the window function.

Zero-padding – A practical example

In this section, zero-padding is explained with an easy practical example. For this purpose, the following signal is used:

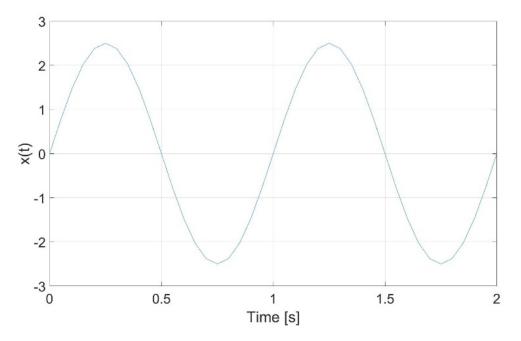


Fig. 8.65: Signal 1 in time domain, 2s (41 samples)

 $x(t) = 2.5 * sin(2 * \pi * 1 * t)$

The signal has a length of 2 seconds and is sampled with 20 Hz. Thus, the signal consists of 41 samples. Transforming the signal into the frequency domain leads to the following spectrum:

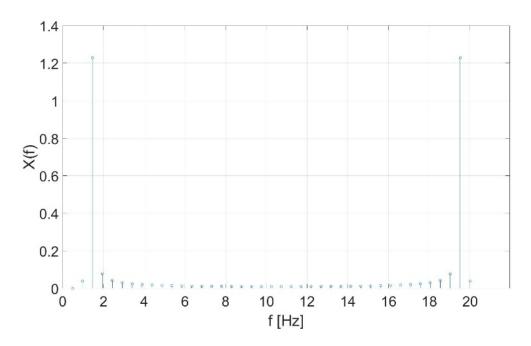


Fig. 8.66: Signal 1 in frequency domain, no zero-padding

The spectrum consists of 41 bins and the peaks @1 Hz and 19 Hz are clearly visible.

Now, the signal length is enhanced from 41 samples to 64 samples by adding 23 samples at the end of the signal:

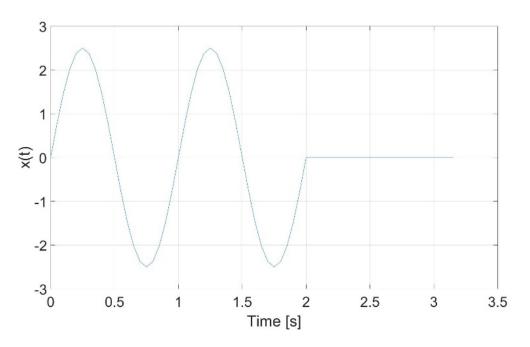


Fig. 8.67: Signal 1 in time domain, zero-padding to 64 samples

Transforming the signal to the frequency domain leads to the following spectrum:

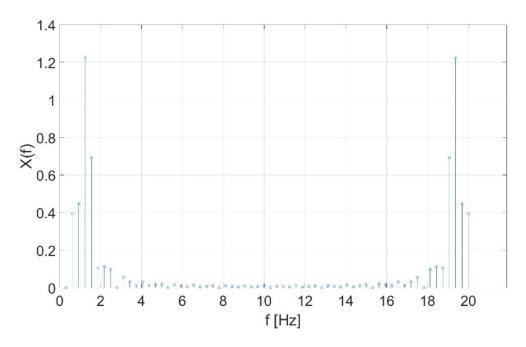


Fig. 8.68: Signal 1 in frequency domain, zero-padding to 64 samples

Now the spectrum consists of 64 samples and not 41 samples and the additional frequency bins are kind of an interpolation but do not lead to a sharper spectrum.

The same trend is visible if the original signal is enhanced from 41 samples to 128 samples by adding

87 zeros at the end of the signal:

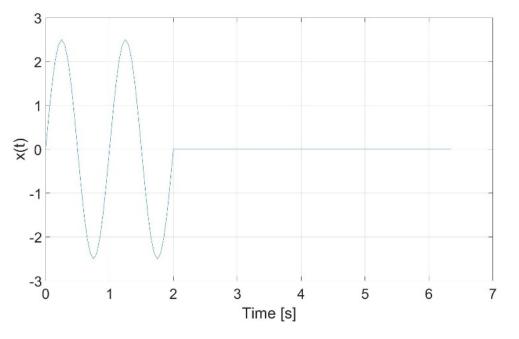


Fig. 8.69: Signal 1 in time domain, zero-padding to 128 samples

This signal leads to the following spectrum with 128 frequency bins:

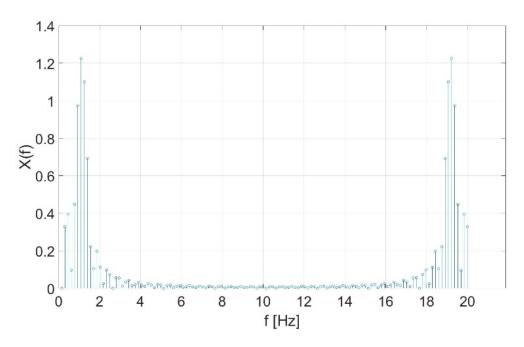


Fig. 8.70: Signal 1 in frequency domain, zero-padding to 128 samples

Again, the additional bins are only kind of an interpolation, but do not lead to a sharper spectrum.

To enlarge the accuracy of the FFT, a longer signal in time domain is required. Therefore, the original sine signal is enlarged to 6.4 seconds (128 samples):

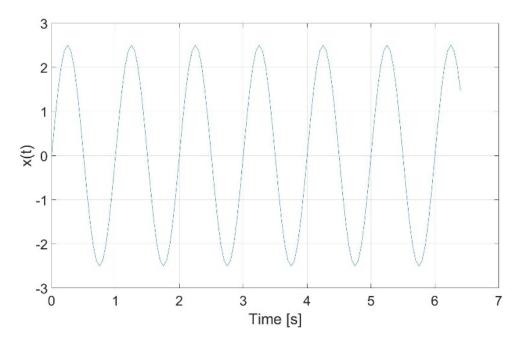


Fig. 8.71: Signal 2 in time domain, 6.4s (128 samples)

The resulting spectrum consists also of 128 bins but now, the additional bins really lead to a sharper spectrum and are no longer only an interpolation of the original 41 frequency bins:

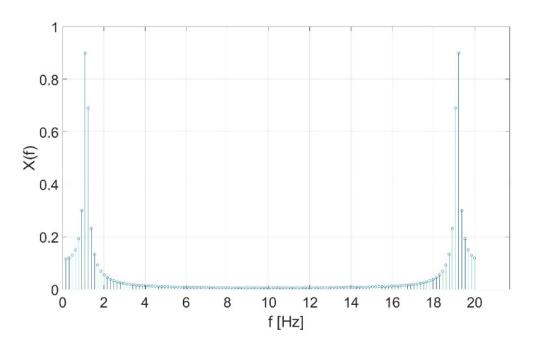


Fig. 8.72: Signal 2 in frequency domain, no zero-padding

Additional information: normalization of FFT Spectra

In this section, the necessity of the normalization during the FFT calculations is explained. Therefore a 50 Hz sine wave with 2.5 amplitude shall be transformed to the frequency domain. The sample rate is 1000 Hz and the signal length 10s. The signal looks as follows in time domain:

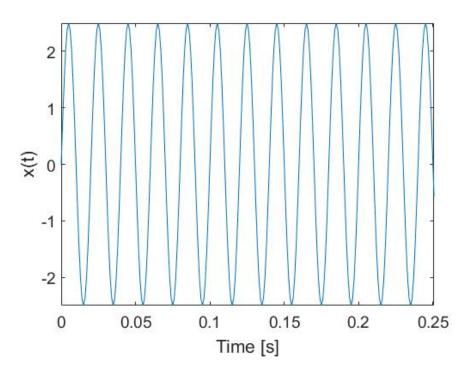


Fig. 8.73: Signal in time domain (first 250 ms)

$$x(t) = 2.5 * sin(2 * \pi * 50 * t)$$

After transforming the signal into the frequency domain according to the formula

$$Y_k = \sum_{n=0}^{N-1} X_k e^{\frac{-i2\pi kn}{N}}; \quad k = 0 \dots N - 1 \qquad (N = 10001)$$

and determining the absolute value, the spectrum is the following:

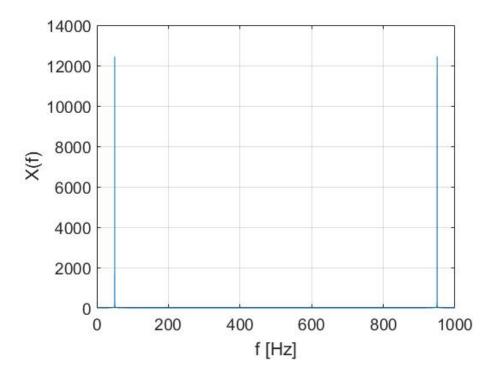


Fig. 8.74: x(t) in frequency domain

Two things are peculiar:

- As the FFT produces a two-sided spectrum, there is a bin @ 50 Hz and @ 950 Hz.
- As the signal level of the two peaks is ~12500, the unit seems to be arbitrary.
- To create a comprehensible signal unit, the Fourier Transform of the signal must be divided by the length of the FFT which is 10001 in this example.

$$Y_{\text{nor}m_k} = \frac{Y_k}{N}; \quad k = 0...N - 1 \quad (N = 10001)$$

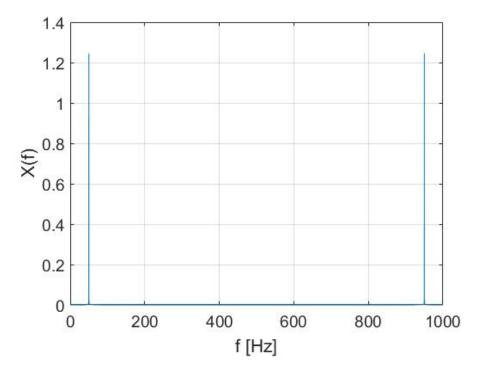


Fig. 8.75: x(t) in frequency domain divided by the FFT-length

Now, the amplitude of both peaks is \sim 1.25. As we still have two peaks whose sum is \sim 2.5, the signal unit issue is solved by dividing the spectrum by the length of the FFT.

In a next step, we truncate the spectrum at the Nyquist frequency $\left(\frac{f_s}{2}\right)$ which is 500 Hz in our case and multiply the remaining spectrum from 0 to 500 Hz with the factor 2 to ensure that the power of the signal in the frequency domain is still the same as in the time domain. After that, the following spectrum results:

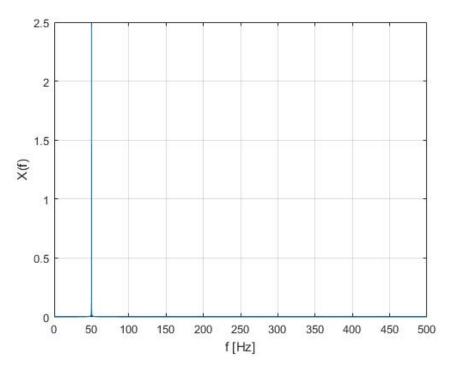


Fig. 8.76: One-sided spectrum X(f) multiplied by factor 2

In this first example, there is no normalization needed, because we didn't use a window function. In this case, there was no window function needed, because we transformed a finite and periodical signal. In practice, this is normally not the case and a continuing signal is transformed block by block. As these block lengths are finite, the Leakage effect occurs if the block length does not coincidentally match with an integer multiple of the signal period. In this case, the frequency spectrum becomes too wide. This is a natural effect resulting from the Fourier Transform property which says that a multiplication in time domain leads to a convolution in the frequency domain. The fact that the frequency spectrum becomes too wide can be optimized but not completely rejected by the usage of a window function. This leads to the fact that the signal is faded in at the beginning of the window and faded out at the end of the window. Thus, an artificial periodical signal results and an error in the signal amplitude results. This amplitude error is corrected by the normalization of the signal.

Let's assume again the 50 Hz sine wave with 2.5 amplitude shown in Fig. 8.73 and multiply it with a Hanning window. The formula for the creation of a Hanning window can be found in section *Window type*. After the multiplication, the signal looks as follows:

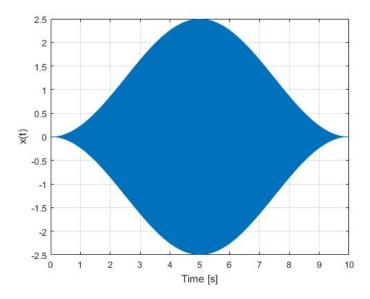


Fig. 8.77: x(t)_{win} in time domain; multiplied with a Hanning window

$$x(t)_{\rm win} = [2.5 * \sin(2 * \pi * 50 * t)] * \left[0.5 * \left(1 - \cos\left(\frac{2 * \pi * n}{N - 1}\right) \right) \right]; \quad n = 0 \dots N - 1$$

The spectrum of the signal looks as follows:

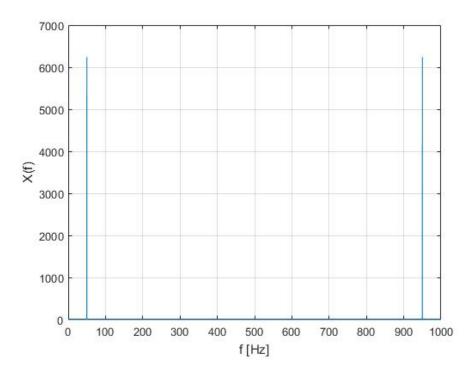


Fig. 8.78: x(t)_{win} in frequency domain

Again, the signal unit looks arbitrary. Thus, we divide the spectrum by the length of the FFT (N=10001) again.

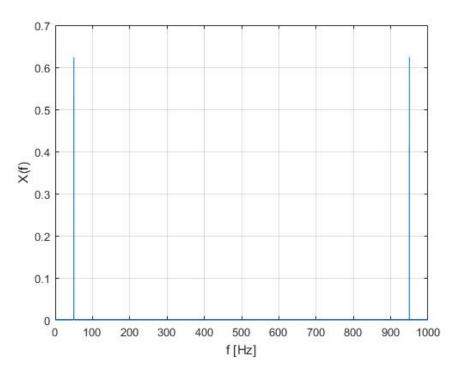


Fig. 8.79: x(t)win in frequency domain divided by the FFT-length

After that we truncate the signal again at the Nyquist frequency and multiply the remaining spectrum with the factor 2 to secure that the signal power in time and frequency domain is equal.

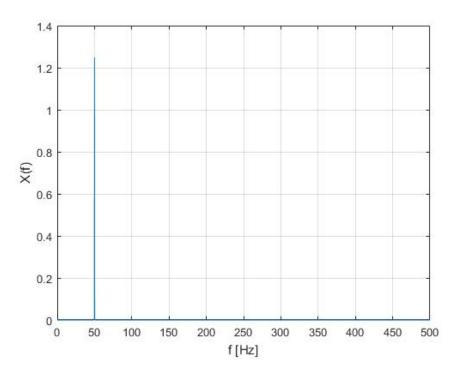


Fig. 8.80: One-sided spectrum $X(f)_{win}$ multiplied by factor 2

Now we clearly see that the peak @50 Hz is not 2.5 as before but only \sim 1.25. This is because of the windowing. This can be corrected with the normalization. There are two possibilities: We can either

normalize the spectrum to the original signal amplitude or to the original signal power.

To refit the spectrum according to the original signal amplitude, we must select the *Amplitude True* normalization:

$$X(f)_{\mathsf{win}\,\mathsf{AmpCorr}} = X(f)_{\mathsf{win}} * [\frac{N}{\sum_{k=1}^{N} W_k}]$$

where N denotes again the window (and signal) length and W_k the value of the window function at position k.

There we can see that the peak @50 Hz is again 2.5. But in this case, the signal power in frequency domain is not the same as in time domain. If this is required, we must select the *Power True* normalization:

$$X(f)_{\mathsf{winPowCorr}} = X(f)_{\mathsf{win}} * \sqrt{\frac{N}{\sum_{k=1}^{N} W_k^2}}$$

where N denotes again the window (and signal) length and W_k the value of the window function at position k.

Now, the power in frequency domain is the same as in time domain, but the amplitude does not match correctly anymore.

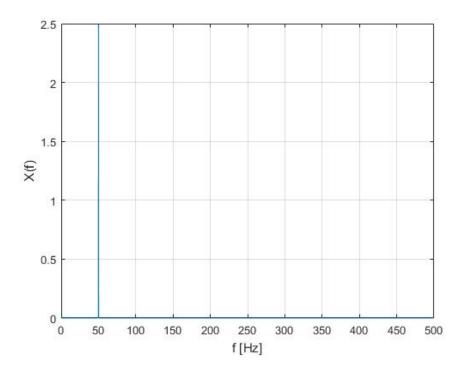


Fig. 8.81: Amplitude-True-normalized spectrum X(f)

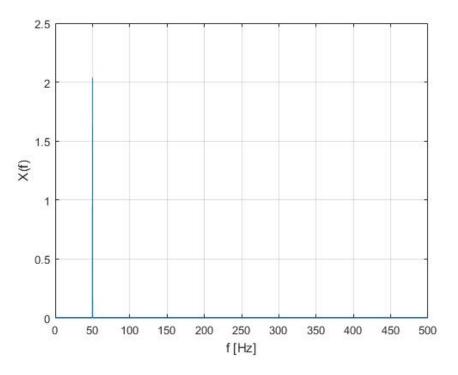


Fig. 8.82: Power-True-normalized spectrum X(f)

Additional information: calculation of a Periodogram

This section will demonstrate the calculation of a periodogram on a practical example. The exemplary window size is 1000 samples. The following figures illustrate the decomposition of a time signal for the calculation of a periodogram:

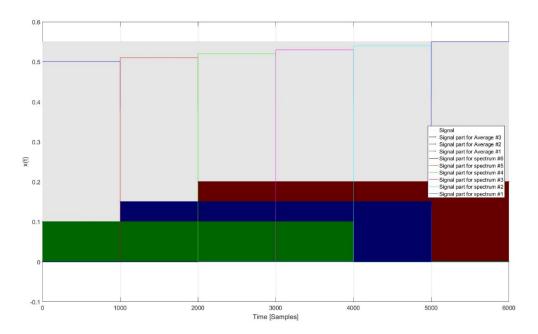


Fig. 8.83: Decomposition of the time signal for a Periodogram with an average of 4 spectra and 0 % overlapping

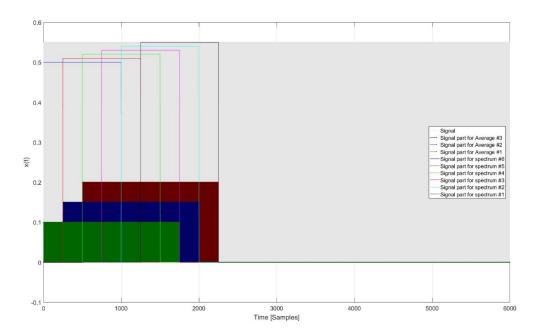


Fig. 8.84: Decomposition of the time signal for a Periodogram with an average of 4 spectra and 75 % overlapping

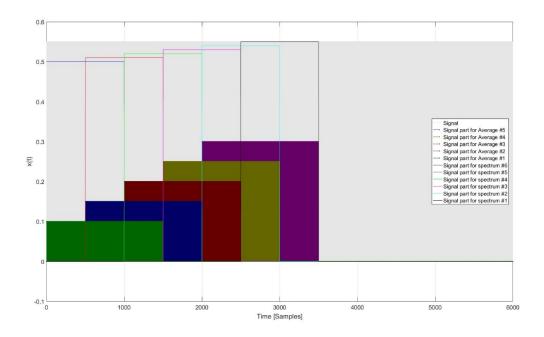


Fig. 8.85: Decomposition of the time signal for a Periodogram with an average of 2 spectra and 50 % overlapping

8.12.11 FFT for recorder region

It is also possible to calculate the FFT for the assigned time domain channel based on a selection from A/B cursor in a recorder. For this to work, the recorder needs to be on the same page and has its settings to "Link mode: Instruments on page" (1). The channel of the recorder must be also assigned to the spectrum analyzer and the FFT option "Link to Recorder Cursor" must be enabled (2).

Fig. 8.86: Spectrum analyzer with data based on recorder region

This function is available in LIVE (freeze), Recording (Deja-View) and PLAY mode.

8.13 Video instrument

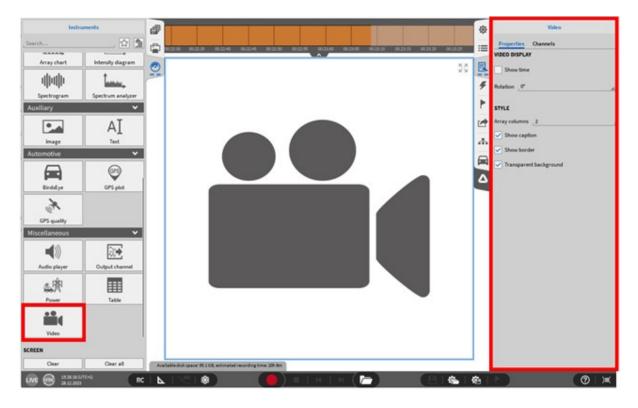


Fig. 8.87: Video instrument - overview

OXYGEN provides the possibility to record a video during the measurement. The following cameras types are supported:

- USB webcams
- DEWE-CAM-GIGE-120 and DEWE-CAM-GIGE-50-HD
- ALVIUM 1800 U-240 and ALVIUM 1800 U-040
- ALVIUM G1 and G5

For example, this is a very useful tool for automotive applications when a test run is performed, and the test track shall be recorded. Please note that the camera channels are not activated by default in a new setup. This can be changed in the *Data Channels* menu in the *Video Channels* section by clicking on the *Activate* switch. This will activate your plugged camera. For enabling the record mode as well, make sure that the *Stored* button has the red colored background (see Fig. 8.88).

	CH1 CH2	CH3 CH4 CH5 C	NS CHY CHE A									
	• •			8								
m	© ©		ан снл сня н Э (Э (Э (Э									
~	() ()) (i)								
-	CHI		00		-							
	••											
All	Search.		CAN			« —						
~	X Active			Color S	Setup Scal	ed Value Mode	Sample Rate 10000 Hz	Range -100 V _ 100 V	Nearer I	Scaling	·	
		Al 2/2 Sim	TRON-1020-ACC-0-BNC	-	40 59.999987	AVG Voltage			Offset: 0 Scale: 1	Unit: V	8	
		H12/3	TRON-1020-ACC-0-8NC	-	*** [-35] m 19,999992	Vice voltage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Unit: V		
		A12/4	TRON-1020-ACC-6-BNC	-	6 59.999987	1 in vouage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V	*	
		A12,5	TRON-100-ACC-6-8NC	-	· · 10.000005	voitage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		Al 2/6 Sim	TRON-100-ACC-0-BNC	-	© -10000000 	300 Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit:		
		CNT 2/1 Sim	TRON-1620-ACC-6-BNC		3.958300e -327382588	+4 AVG Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:		
	1	RION-2402-MULTI-8-L	.0B									
		Al 3/1 Sim	TRION-2402-MULTI-8-L08		© 0.036276	AVG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 3/2 Sim	TRON-DRO-HULTI-6-LOS		© 0.004620	AVG Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Unit: V		
C		Al 3/3 Sim	TRION-3402-MULTI-8-L08		6.019099	AVG Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 3/4 Sim	TRON-3402-MUL71-0-L08		8 1.996159	AVG Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Unit: V		
E		Al 3/5 Sim	TRON-3402-WULT-0-L00		@ 6.003839	AVG Voltage	10000 Hz	-10 V _ 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 3/6 Sim	1803-202-4/207-6-005		@ -0.990400	AVG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 3/7 Sim	TRON-2822-MULTI-6-L08		@ 0.000000	AVG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		Al 3/8 Sim	TRON-2820-MUCH-6-L08		© 0.000000	AVG Voltage	10000 Hz	-10 V 10 V	Scale: 1 Offset: 0	Unit: V		
		CAN 3/1 Sim			@ used	as analog HighSpeed			Unifer 0	_		
		RION-2402-dACC-8-SI	TRON-DED-MULTI-8-LOS	-								
		Al 4/1 Sim			46 0.421641	AVG Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		Al 4/2 Sim	TRION-2402-6ACC-6-SHB	-	-0.013301	AVG Voltage	10000 Hz	-100 V 100 V	Offset: 0 Scale: 1 Offset: 0	Unit: V		
		Al 4/3 Sim	TRION-2402-6ACC-0-GHB	-	60.159283	100 sociale	10000 Hz	-100 V _ 100 V	Offset: 0 Scale: 1 Offset: 0	Unit: V		
		A143	TRION-2402-6ACC-8-5H8	-	(b) [-200 (b) 19.967992	300			Offset: 0 Scale: 1 Offset: 0	Unit: V		
		A144	TRION-2402-6ACC-6-5H8	-	60.031967	1 mil	10000 Hz	-100 V _ 100 V		Unit V		
		A145	TRION-2402-6ACC-8-5H5	-	-9.920005	Aug Vottage	10000 Hz	-100 V _ 100 V	Scale: 1 Offset: 0	Unit V		
		A146	TRION-2402-6ACC-6-5H8	-	© -9.920005	1 100 Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V		
		A14/1	TRION-2402-6400-6-5H5		© 0.000000	1 300 Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0	Unit: V Unit: V		
		Al 4/8 Sim	TRION-2402-64CC-8-5HB		-200	1 300 Voltage	10000 Hz	-100 V 100 V	Scale: 1 Offset: 0			
		CNT 4/1 Sim	TRION-2402-4ACC-6-SHE		@ 3.956300e	Events	10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:		
		CNT 4/2 Sim	TRON-0402-6ACC-6-DHB		© 7.916633e		10000 Hz	-2.14748365e748365e+009	Scale: 1 Offset: 0	Unit:		
▼ (- ·	fideo Channels										
		HP HD Webca	m [Fixed]		۲		30 fps					
			ering Manager		۲		0 fps					
1												

Fig. 8.88: Activate cameras and enable recording

After that the user can find the cameras in the *Data Channel* List of the Video Instrument and assign a video channel.

Note: The video recording with a webcam or a DEWE-CAM-GigE-120/-50-HD in fixed frame rate mode are not synchronized to the other measurement channels. When synchronized recording is required, OXYGEN supports time synchronous recording with a DEWE-CAM-GigE-120/-50-HD.

For the driver installation and the required software settings refer to the Installation Guide of the DEWE-CAM-GigE in OXYGEN.

Note: If the camera channel does not appear in the Channel List although a camera is connected to the measurement system, make sure that *CAMERA Series* for webcams or the *GIGECAMERA Series* for GigE cameras are enabled in the *DAQ Hardware* setup (see Fig. 8.89) in the *System Settings*.

۞	System Settings	DAQ Hardware					
	Measurement Setup						
	Header Data	ADMA					
E,	Advanced Setup	ALTA_DT					
0	Hardware	CAMERA					
۶	Sync Setup	DAQP					
	DAQ Hardware	EPAD					
	Amplifier / RS232 / RS485	GIGECAMERA					

Fig. 8.89: Enabling the Camera Series and the GigE Camera series in the DAQ Hardware setup

The Video Instrument has the following Instrument Properties (see Fig. 8.87):

- Video display
 - If Show time is selected, the current measurement time is displayed in the Video Instrument
 - Rotation of video picture by 90°, 180° or 270°
- Style: The user can specify the number of columns if several channels are selected. Selection of a transparent or untransparent background.
- Layer: Moves the instrument in front of or behind another object (only applicable in *Design Mode*).

Note: For each connected camera, there exists a counter channel that counts the number of received frames since acquisition start. The channel has the same name as the respective camera with RcvdCNT appended. To activate the counter, you need to activate the channel (The channel is not activated automatically). The channel can be found in the *Video Channels* section of the Channel List (see Fig. 8.90).

\$	4											
	æ											
0	2											
E.	1	CH 1	CH 2		CH 4 CH 5) (CH 6) (1603-LV					
۶	All	Searc	:h	, T _x	-6						«	
	~	x Active	Stored		Channel		Color	Setup	Scaled Value		Mode	Sample Rate
	►		DEWE2-	A4								
			TRION-	1603-LV-6-BI	NC							
i				Al 1/1 Sim	TRION-16	03-LV-6-BNC			0.508957	AVG	Voltage	10000 Hz
				Al 1/2 Sim	TRION-16	03-LV-6-BNC		礆	-0.280969	AVG	Voltage	10000 Hz
				Al 1/3 Sim		03-LV-6-BNC			-59.999089	AVG	Voltage	10000 Hz
				Al 1/4 Sim		03-LV-6-BNC		礅	-11.999814	AVG	Voltage	10000 Hz
				Al 1/5 Sim		03-LV-6-BNC		暾	-67.998971	AVG	Voltage	10000 Hz
				Al 1/6 Sim		03-LV-6-BNC		豪	69.934966	AVG	Voltage	10000 Hz
				BoardCNT BoardCNT 1/1	1/1 Sim	03-LV-6-BNC		¢	2.875000e+4	AVG	Events	10000 Hz
			Video C	hannels	110112				1241400040 124			
				Camera 50	-051703 R	cvdCNT eived frames		¢	2.855000e+2	ACT	Events	
					-050333170	3		¢				100 fps
										1		

Fig. 8.90: Frame Counter Channel

Note: When using more than one USB camera, problems may occur under Windows 10[®] if they are connected on the same USB hub. The second camera (and others) may not work/show a picture. If more cameras shall be used, only one camera per USB hub should be connected to the system.

8.14 XY plot

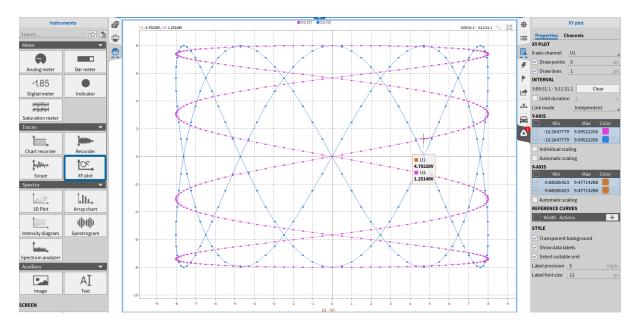


Fig. 8.91: XY plot instrument – overview

With the XY plot, it is possible to analyze the dependency of a measurement channel on the Y-axis to another one on the X-axis. A common application in the automotive sector is the analysis of the engine's sound pressure level (Y-axis) in the dependency of the motor speed (X-axis). The user can adjust the following instrument properties:

- XY plot
 - Use the X Axis Channel drop-down menu to select the channel that shall be plotted on the X-axis. Any further added channels (either via Drag-and-Drop or by clicking on them in the small data channels menu) will be plotted on the Y-axis.
 - Use Draw points and/or Draw lines to change the graphical characteristics of the plotted signal.
- Interval
 - The time interval of the plotted data is displayed here and in the upper right corner of the instrument. To start the drawing of a new plot and delete the currently displayed time interval, press the *Clear* button.
 - If the check box *Limit duration* is selected the user can define a time interval to limit the
 plotted information, i.e. when 1 second is selected, all information older than 1 second will
 be deleted automatically.
 - Link mode allows users to link the time axis of instruments. See Linking the time axis of several recorders for details.
- Y-axis:
 - Assign a user-defined min/max value to the Y-axis scaling
 - Individual scaling creates a separate Y-axis for each signal
 - Automatic scaling zooms the Y-axis to the actual displayed min and max value

- X-axis:
 - Assign a user-defined min/max value to the X-axis scaling
 - Automatic scaling zooms the X-axis to the actual displayed min and max value
- Reference curves:
 - Use the + button to create multiple reference curves as a visual boundary. These serve as guides only; no automatic action is triggered when data crosses a curve.
 - Click Edit to define the reference curve by entering X and Y coordinates. OXYGEN will draw linear segments between the defined points (see Fig. 8.92).

Note: The above-described reference curve applies solely for the XY-Plot. For the advanced math plugin Time Reference Curve, see chapter *Time reference curve*.

- Style:
 - Selection of a transparent or opaque background.
 - Show data labels hides/displays permanent data labels in PLAY mode
 - Edit precision and font size of data label via Label precision and Label font size
 - Layer: Moves the Instrument in front of or behind another object (only applicable in *Design Mode*)

The Channels tab lists all pairs of channels on the X-axis and Y-axis. New pairs can be added. The X-channel and Y-channel for each plotted pair can be manually defined.

The XY Plot instrument supports A/B cursors. Unlike in recorder instruments, no statistical calculations are provided here. The cursor table displays only the current values of cursors A and B, along with their difference. Regardless of whether A/B cursors or data labels are enabled, the crosshair cursor values are always displayed in the upper-left corner of the instrument.

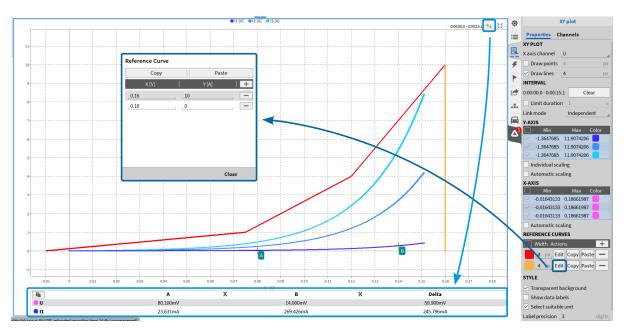


Fig. 8.92: XY plot – highlighted reference curve settings and A/B cursors

Note:

- Additional features for Y-axis scaling (see *Quick selection Y-axis scaling*) and zooming (see *Pinch/Scroll zoom feature*) are also supported in the XY-Plot Instrument
- In the *PLAY* mode and *LIVE* mode (with frozen screen) the user can scroll through the measurement data by moving the orange time marker in the Overview bar or in a Recorder if one is displayed. The Interval settings in the Instrument Properties are respected during this operation.
- Up to 10 channel pairs (X-channel and Y-channel) channels can be assigned to a single Table Instrument.

GPS plot Instruments GPS plot പ്പ ø X ☆ ੇ Char Channel ٢ = X 47.0423 15.4681 2 Longit = X = X • Center (4) Rotate h (3) II X Spee RACK Clea enau Murpark (5) Limit duration u-Murpark ACKGROUND IMAGE 6 Grid size: 500r Data Import im t | Data © (s^2] 🔵 COLOR ☽ Auto range Maximum color, 100 Minimum color (SCREEN 8 Clear all Clear A 硇 ? K M $\overline{}$

8.15 GPS plot

Fig. 8.93: GPS plot instrument - overview

The GPS plot instrument (1) displays Latitude, Longitude, and Heading channels acquired by TRION-TIMING or TRION-VGPS modules (see *GPS channels*). These channels are automatically assigned the LAT, LON, and HEAD based on their channel mode (2).

Alternatively, mathematical channels (e.g., Statistics channels) can be assigned to the GPS plot, but they must be assigned in a specific order (Latitude, Longitude, Heading) and cannot be automatically matched. A fourth channel, such as speed, can be added to create a color trail based on a defined minimum and maximum value and color (3).

The displayed map is an online OpenStreetMap, which can be stored in the cache for offline viewing.

The user can manipulate the following Instrument Properties:

(4) ZOOM MODE

- *Manual*: The user can zoom with the scroll wheel and move the map with the left mouse button. The actual position will not be centered when the position is updated.
- *Fit*: The complete track of the object is visible in the Instrument. Zooming or moving is not applicable.

- *Center*: The actual position of the tracked object is always displayed in the center of the Instrument. Zooming with the scroll wheel and moving with the left mouse button is possible but the actual position will be centered again when the position is updated.
- *Rotate*: The actual position of the tracked object is always displayed in the center of the instrument and the heading shows always to the top. Zooming with the scroll wheel and moving with the left mouse button is possible but the actual position will be centered again when the position is updated.
- Show Map: Toogle if the Open Street map is shown or not.

(5) TRACK

- The elapsed track will be deleted by clicking on the *Clear* button. The drawing of the elapsed track can be limited by entering a time in seconds in at *Limit duration*
- By default the whole track is displayed as no limit is active.

(6) BACKGROUND IMAGE

• For offline usage, an image can be loaded to replace the map. An image can be selected by clicking on the *Import Image* button and browsing for the desired file. After selecting the desired file, the *Positioning* dialog will open:

Fig. 8.94: Image positioning dialog

Two GPS coordinates within the loaded image must be known to position the image correctly. In Fig. 8.94, the two points and their corresponding coordinates are marked with red and blue. The procedure to position the image is the following:

- Two red cursors are generated by the Positioning dialog. In Fig. 8.94, they can be found at the top of the image. These cursors must be put on the known coordinates.
- The coordinates of both known points must be entered.
- Latitude and Longitude of MAP POINT 1 must be entered for the known coordinates the first red cursor is placed on. In Fig. 8.94, this is the GPS coordinate marked with blue
- Latitude and Longitude of MAP POINT 2 must be entered for the known coordinates the second red cursor is placed on. In Fig. 8.94, this is the GPS coordinate marked with red
- Alternatively, the image pixel corresponding to *MAP POINT 1* and *MAP POINT 2* can be entered in the X and Y columns
- After the positioning is finished and clicking on *Apply*, the image is placed correctly on the map (see Fig. 8.95):

Fig. 8.95: Positioned image

(7) COLOR

- Auto range accounts for the channel range as maximum and minimum of the color trail.
- The color of maximum and minimum as well as the values can be freely chosen

8 STYLE

• Transparent background: Toggles background opacity.

8.16 GPS quality

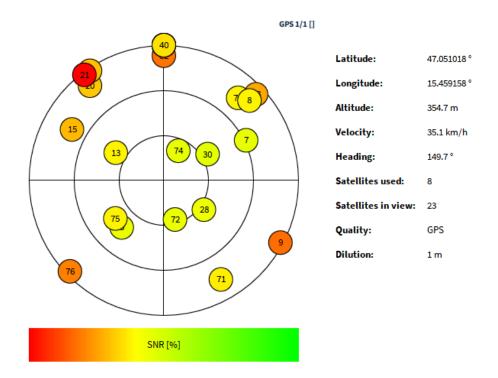


Fig. 8.96: GPS Quality instrument - overview

The GPS quality instrument displays the number of visible and used satellites of GPS data which is acquired by a TRION-TIMING or TRION-VGPS-20/-100 module (see *GPS channels*) and further meta data. The used satellites are thereby the satellites with the best SNR. The NMEA data channel can be assigned to the GPS quality instrument. Normally, the NMEA data channel is called *GPS 1/1* per default and can be found on the top of the GPS data channels list:

			DOARDS N L 1/1	188209-11001004		1-/19/90000 /19/900001	
$\mathbf{\mathbf{\nabla}}$	 Image: A start of the start of		GPS 1/1 GPS 1/1	TRION-TIMING	豪	\$GPRMC,070033.000,A,4651.6	NMEA
1.7			Latitude_GPS 1/1 GPS 1/1 GPS	Latitude	礅	46.860450 AVG	Latitude
			Longitude_GPS 1/1 GPS 1/1 GPS	Longitude	礅	15.531567 AVG	Longitude
			Altitude_GPS 1/1 GPS 1/1 GPS	Altitude	<u>ت</u>	2.890000e+2 AVG	Altitude
			Velocity_GPS 1/1 GPS 1/1 GPS	Velocity	@	NaN AVG	Velocity
			Heading_GPS 1/1 GPS 1/1 GPS	Direction	豪	2.926000e+2 AVG	Direction
			Satellites_GPS 1/1 GPS 1/1 GPS	Satellites	礅	4.000000 AVG	Satellites
			Fix Quality_GPS 1/1 GPS 1/1 GPS	Quality	礅	GPS	Quality
			H. Dilution_GPS 1/1 GPS 1/1 GPS	HDOP	礅	1.000000 AVG	HDOP
			SoD_GPS 1/1 GPS 1/1 GPS	Second	礅	2.523300e+4 AVG	Second
			Date_GPS 1/1 GPS 1/1 GPS	Date	礅	2018-01-01 07:00:33.000	Date
			Acceleration_GPS 1/1 GPS 1/1 GPS	Acceleration	礅	NaN AVG -1000 1000	Acceleration
			Distance_GPS 1/1 GPS 1/1 GPS	Distance	⊚	NaN AVG	Distance

Fig. 8.97: GPS NMEA data channel

Besides the satellites plot, the following meta data which is contained in the NMEA string can be displayed in the GPS quality instrument:

- Latitude
- Longitude
- Altitude
- Velocity
- Heading
- Satellite used
- Satellites in view
- Quality
- Dilution

The following Fig. 8.98 explains the meaning of the three black circles with the same center point in the satellites plot:

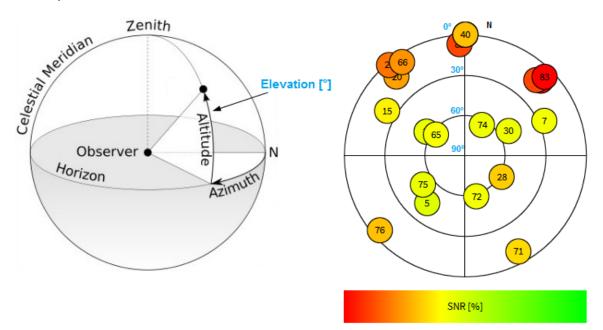


Fig. 8.98: Explanation of the satellites plot

The deselection of the instrument property *Extended View* reduces the content of the GPS plot Instrument to the satellites plot:

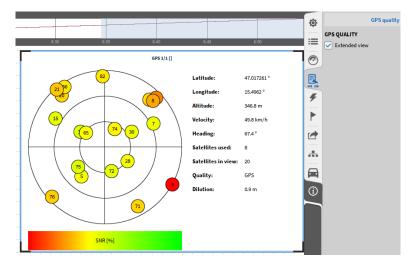


Fig. 8.99: GPS quality instrument - Extended View selected

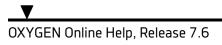



Fig. 8.100: GPS quality instrument - Extended View deselected

8.17 Spectrogram

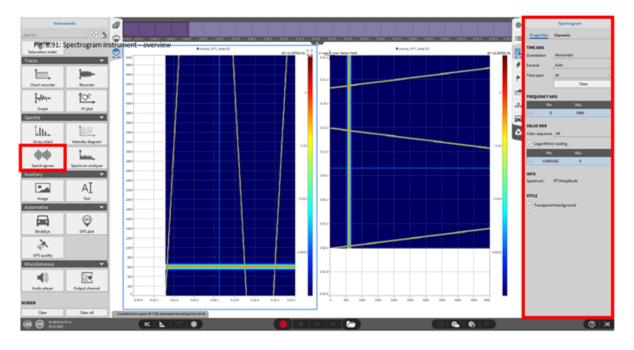


Fig. 8.101: Spectrogram instrument – overview

The Spectrogram may be used to display the time dependent signal trend of a FFT amplitude or phase channel that was created with the FFT math (for details, refer to *FFT channels*).

The elapsed time is displayed on the X-axis, the frequency on the Y-axis and the amplitude of the signal is Color-Coded to the Z-Axis (Left instrument in Fig. 8.101).

Note: Only 1 FFT amplitude or phase channel can be assigned to one single Spectrogram.

The Spectrogram has the following Instrument Properties:

- Time Axis Orientation: *Horizontal* orientation assigns the time axis to the X-axis of the instrument (see left instrument in Fig. 8.101) and *Vertical* orientation assigns the time axis to the Y-axis of the instrument (see right instrument in Fig. 8.101).
- Time Axis Format: This property changes the format of the X-axis. The user can select between *Auto, Absolute time* and *Relative time*.
 - Auto: In Sync Mode, the Auto time format is the Absolute time, otherwise the Auto time format is the Relative time.
 - Absolute time: The unit of the X-axis is the actual time of day set in the OS settings.
 - *Relative time*: The unit of the X-axis is the relative time starting with 0:00 for every new measurement.
- Time Axis Duration: Select the Time interval that shall be plotted on the Time Axis here. The *Clear* button deletes the actual displayed data from the instrument.
- Frequency Axis: Select the upper and lower frequency the of the plotted data here.

- Gradient: Select a color scheme here. The color intensity can either be changed by entering the value in this menu or by moving the color bar within the instrument up or down while keeping the left mouse button pressed.
- Style: Selection of a transparent or untransparent background.
- Layer: Moves the Instrument in front of or behind another object (only applicable in Design Mode)

8.18 Power Group

Fig. 8.102: Power Group instrument - overview

OXYGEN Power is the up to date Power Analyzer software add-on for DEWETRON OXYGEN Measurement Software. For a detailed explanation of the functionality and usage of the Power module, refer to the manual DEWETRON_OXYGEN_Power_Technical_Reference_Rx.x.

8.19 Intensity Diagram

Infran Snarsh.,			Among Among
Meter	٣		Orientation Herizontal
9			Interprisedum _Notee
Analog mater	the nate		
-1.85			500 Max 20 X00
Digital mater	hear		1.005
1222			
angement Sebustes meter			- 642 6.00
Traces	v		
1	1000-		Color sequence _MA
Ourtrecenter	header		Legarithmic scaling
julle-	tor,	- Annual Annua	No. No.
parts.	W phot		N 100
Spectra	*	LARLINE TO A STATE OF	\$7%.E
ilu.	100		Tamperet beiground
Araychert	Interally diagram		
deb	t		
Sectore an	Spectrum analyzer		
Audiary	*		
	AI		
Inspi	<u></u>		
Automotive	٣		
	Ø	· · · · · · · · · · · · · · · · · · ·	
NORDEN			
Our	Onar all	Aurlahb dai quan 164 Hit, antrodad mandrig tree 2 Bits	
	ni)		(0 ×

Fig. 8.103: Intensity Diagram instrument - overview

The Intensity Diagram can be used to display the frequency and order matrix of an order analysis channel or the resulting matrix of a matrix sampler channel, i.e. an efficiency map.

The Intensity Diagram has the following Instrument Properties:

- Orientation: *Horizontal* orientation assigns the defined X channel to the X-axis of the instrument and *Vertical* orientation assigns the defined X channel to the Y-axis of the instrument.
- Min/Max: the minimum and maximum value can be entered to be displayed in the instrument.
- Gradient: Select a color scheme here. The color intensity can either be changed by entering the value in this menu or by moving the color bar within the instrument up or down while keeping the left mouse button pressed.
- Select levels to have a more defined grading in the matrix. Select the number of levels which should be defined with a black border. The matrix on the left in Fig. 8.103 shows no grading and the matrix on the right has a 10-level grading.
- Enter the minimum and maximum level of the color-coding
- Enable logarithmic scaling by checking the checkbox.
- Style: Selection of a transparent or untransparent background.

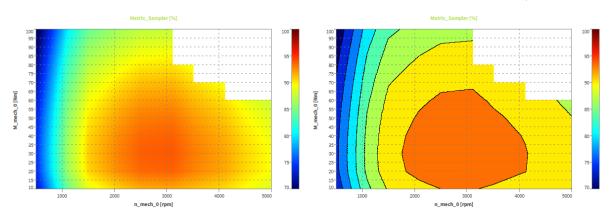


Fig. 8.104: Intensity Diagram of a Matrix Sampler channel without (left) and with level grading (right, 10 levels)

8.20 3D plot

To visualize array data (3-dimensional) the 3D plot can be used. In case 2-dimensional arrays like the amplitude and phase array of the FFT are used, the 3rd dimension is the time. This plot type is useful to analyze data from the order analysis. Also, data from CPB, harmonics or the matrix sample is supported.

The instrument can be found in the spectra tab.

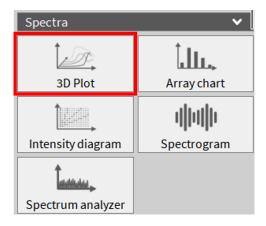
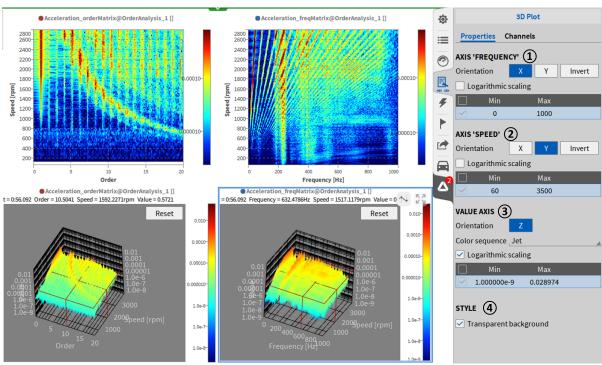



Fig. 8.105: 3D plot instrument in Spectra tab

OXYGEN Online Help, Release 7.6

T

Fig. 8.106: 3D plot example and instrument properties

No.	Fund tion	- Description
1	Axis 1	Depending on the assigned channel, the first axis can be frequency, order or time. By default, the orientation of the first axis is the X-axis. This can be changed to Y or inverted. The range can be toggled as logarithmic, and the axis range can be edited manually. If the axis is a time axis, there are 2 additional properties: format and time span. Format sets the time as relative (acquisition time), absolute time. The time span determines the length of the dataset displayed in the 3d plot.
2	Axis 2	Depending on the assigned channel, the second axis can be speed, amplitude or fre- quency. By default, the orientation of the second axis is the Y-axis. This can be changed to X or inverted. The range can be toggled as logarithmic, and the axis range can be edited manually.
3	Value axis	The orientation of the value axis is fixed as Z-axis. The color sequence can be chosen: RGB, Jet, Hue, Grayscale, Hot or Polar. The range can be toggled as logarithmic, and the axis range can be edited manually.
4	Style	In style the background opacity can be set to transparent.

Example for first axis as time axis.

3D Plot							
Properties	Channels						
TIME AXIS							
Orientation	X Y Invert						
Format	Relative time						
Time span	1 S_4						
	Clear						

Fig. 8.107: 3D plot with time axis

8.21 Array Chart

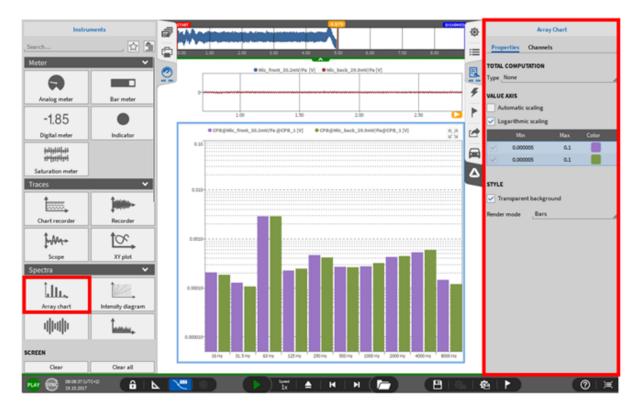


Fig. 8.108: Array Chart instrument – overview

The Array Chart can be used to visualize the CPB channels of a CPB (Constant Percentage Bandwidth) Analysis (refer to *CPB analysis*).

Note: The maximum number of channels that can be assigned to one Array Chart is two.

The Array Chart has the following Instrument Properties:

• Total Computation: It is possible to include a *Total* column (see Fig. 8.109) on the right hand side that display the following value:

V

OXYGEN Online Help, Release 7.6

- None: No value will be displayed
- Minimum: The minimum CPB value will be displayed
- Maximum: The maximum CPB value will be displayed
- Energetic Sum: The energetic sum across the CPB spectrum will be displayed.
- In case it is an Amplitude spectrum, the calculation is the following:

Energetic Sum =
$$\sqrt{\sum_{i=1}^{n} x_i^2}$$

- n ... Number of CPB bins
- $\boldsymbol{x}_i \hdots \mbox{CPB}$ bin with index i
- In case it is a *Decibel* spectrum, the calculation is the following:

Energetic Sum =
$$10 * \log \sqrt{\sum_{i=1}^{n} (10^{\frac{x_i}{10}})^2}$$

- n ... Number of CPB bins
- xi ... CPB bin with index i

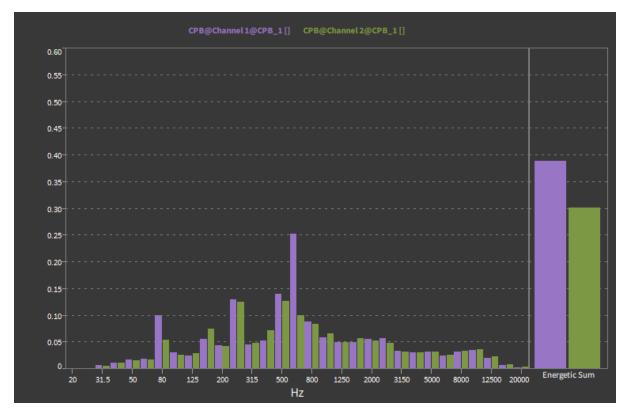


Fig. 8.109: Array Chart with Total column included

- Value Axis: Change the upper and lower limit of the Y-axis. It is possible to choose a logarithmic scaling for the Y-axis
- Style: Selection of a transparent or untransparent background.

The display mode can be selected between bars or lines (see Fig. 8.110).

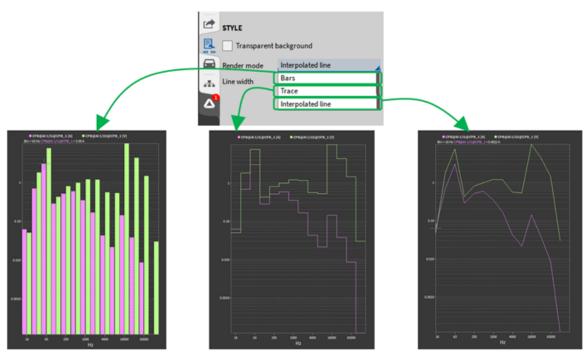


Fig. 8.110: Array chart instrument - bars, lines and interpolated line

8.22 Output Channel

AO 6/1 Sim [V]		AO 6/2 Sim [V]
Waveform	Sine	Constant value
Frequency	1 kHz	5V
Amplitude	1V 📕	
	Peak	
Offset	0 V 🗾	
Phase	0 deg 📕	

Fig. 8.111: Output Channel instrument

The Output Channel Instrument can be used to set the AOUT channels (Analog Output Channels) in the measurement screen. Channels that are set as constant value output or function generator can be displayed and changed here.

Up to 8 channels can be assigned to an Output Channel Instrument. The functions of the Output Channel

Instrument are available in *LIVE* and *REC* mode.

8.23 Audio Player

Instruments		ð	🔅 Audio Player
Search	소 🗈		7:0 7:5 7:0 7:25 7:00 7:36 7:40 7:46 7:50 7:55 6:00 6:00
	anti-tu-	-	Show audio levels
Spectrogram	Spectrum analyzer	0	Al 1/l1 Sim [V]
Auxiliary	~		Al 1/11 Sim [V]
	AI		Volume 187%
Image	Text		
Automotive	~		Levels =40.68 Od B
	9		
BirdsEye	GPS plot		
	or o part		
×.	- 1		
GPS quality			Al 1/l2 Sim [V]
Miscellaneous	~		Volume 110 %
	2 .		Balance
Audio player	Output channel		Levels 40 dB
s.Ř			
Power	Table		

Video			
SCREEN		_	
Clear	Clear all	-	Itable diskspace: 94.808, estimated recording time 2h 2bm
LIVE 10 04.55.30 (UTC-	RC	⊾	NEL (19) (19) (19) (19) (19)

Fig. 8.112: Audio Player instrument – overview

The Audio player Instrument can be used to replay OXYGEN channels via the systems' default sound card.

The instrument provides the possibility to mute the channel(s) (*Output enabled*), to set the output *Volume* and to change to left-right *Balance* (see Fig. 8.112).

The maximum number of channels to be assigned to one Audio Player is 2. It is possible to replay synchronous data channels (i.e. analog inputs and formulas).

The recommended channel sample rate is from 1 kHz to 200 kHz.

Style: Selection of a transparent or untransparent background.

The audio replay functionality is available in *LIVE*, *REC* and *PLAY* mode. In *LIVE* and *REC* mode, the actual data is replayed. In *PLAY* mode the replay is snapped to the position of the Orange cursor (see Fig. 8.113).

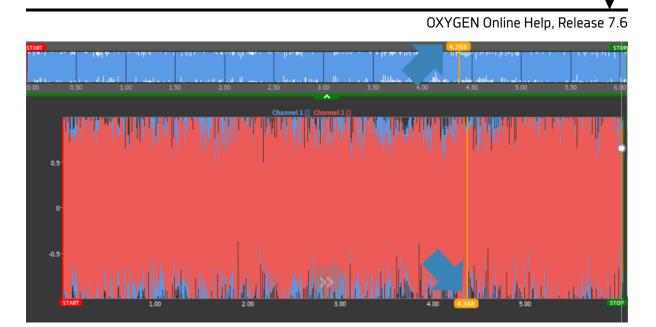


Fig. 8.113: Orange cursor in Overview bar and Recorder

8.24 Change settings of multiple instruments

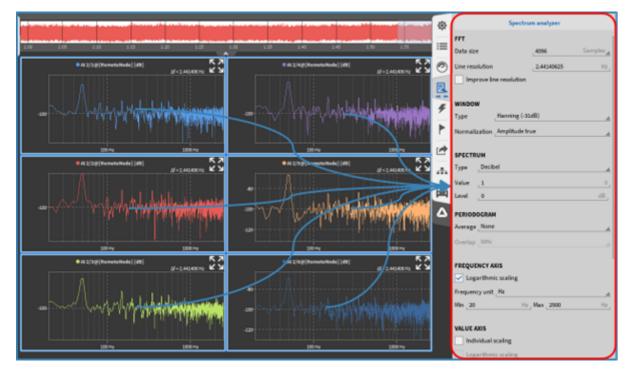


Fig. 8.114: Apply changes to multiple Spectrum Analyzer instruments

It is possible to change the instrument properties of multiple instruments of the same type at once. This is shown in Fig. 8.114 for six spectrum analyzers. Selecting multiple instruments is possible by holding the CTRL-key and clicking on different instruments successively. The combination CTRL+A will select all instruments of this measurement screen.

8.25 Saturation visualization

It is possible to display the saturation visualization for selected channels. This shows the utilization (saturation) of the set measuring range for the channels displayed in the instrument in color based on the MIN/MAX value since the start of data acquisition. The saturation visualization is possible for the following instruments:

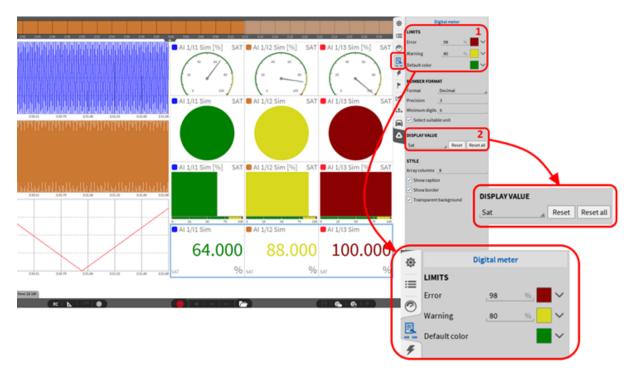


Fig. 8.115: Saturation visualization of channels

- Analog display (see Analog meter)
- Digital display (see Digital meter)
- Bar graph displaymeter (see Bar Meter)
- Indicator (see Indicator)

By default, the limits are set as follows:

- 0 ... 79 %: Green
- 80 ... 98 %: Orange
- 99 ... 100 %: Red

After adding one of the previously listed instruments to the measurement screen, the "Sat" (saturation) mode must be selected as the display value in the settings of the respective instrument. (see 2) in Fig. 8.115). By pressing the "Reset" button, the selected instrument will be reset, by pressing "Reset all", all saturation displays will be automatically reset (instruments other than the selected instrument too). After selecting the display value "Sat", the colors as well as the limit values for the display can be changed if required (see 1) in Fig. 8.115).

8.26 Saturation meter

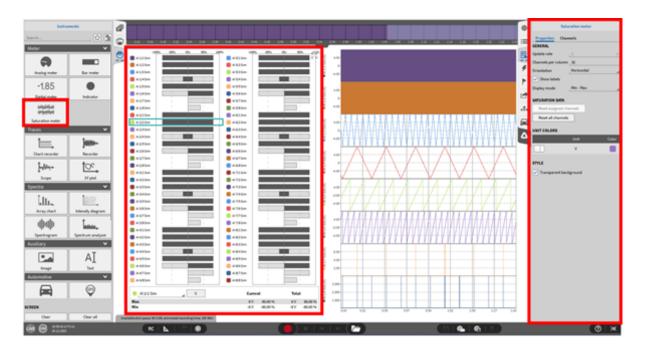


Fig. 8.116: Saturation Meter - Overview

It is possible to visualize the saturation of all available analogue input signals within only one instrument, the so-called saturation meter. With this instrument it is easy to see if any analogue input channel is not activated or in overload.

Fig. 8.117 shows how the saturation will be visualized within the instrument. The minimum and maximum saturation of the channel will be displayed in light grey, the current measured value of the channel will be displayed in dark grey. It is possible to set different colors for the visualization of the channels with the same unit (see (8) in Fig. 8.118).

Fig. 8.117: Display of saturation within saturation meter

✡	Satu	ration meter	
:=	Properties Chan	nels	
	GENERAL		\sim
	Update rate	1	
411 111	Channels per column	32	(2)
4	Orientation	Horizontal	3 4
	Show labels (4))	
r	Display mode	Min - Max	5
	SATURATION DATA		
	Reset assigned cha	annels 🤅	5)
	Reset all channels		
	UNIT COLORS		
		Unit	Color
		v	
		mA	
	STYLE		
	Transparent back	ground 9	

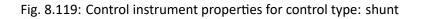
Fig. 8.118: Saturation meter instrument settings

No.	Func- tion	Description
1	Update rate	Update rate of saturation meter. Default at 1 second and defined by statistics win- dow in the triggered events.
2	Chan- nels per column	Number of channels which will be displayed within one column. If the measure- ment systems consist, out of 128 analogue input channels and 32 will be selected, as an example, this would lead to 4 displayed columns with 32 channels each.
3	Orien- tation	Switch between horizontal and vertical alignment of displayed channels.
4	Show labels	Activate or deactivate the display of channel names within the saturation meter. (This is only available in the horizontal orientation.)
5	Display mode	Min – Max: Saturation will be displayed between -100 $\%$ and +100 $\%$ Zero – Max: Saturation will be displayed between 0 $\%$ and 100 $\%$
6	Reset as- signed chan- nels	Resets the selected channels within the saturation meter.
7	Reset all chan- nels	Resets all channels in the selected instruments.
8	Format	It is possible to assign a color to a specific unit. With the settings in Fig. 8.118, all channels with the unit [V] will be displayed in purple and all channels with the unit [mA] will be displayed in red.
9	Preci- sion	It is possible to choose between "Decimal" or "Scientific" representation of the numerical display in the saturation meter.
10	Unit colors	Number of decimal places in the numerical display. It is possible to select between 0 and 20 decimal places.
11	Style	Enable or disable a transparent background with the checkbox.

Table 8.5: Saturation meter instrument settings

8.27 Control instrument

The Control instrument is available under the Miscellaneous category in the Instrument tab. Its functionality depends on the selected control type. The available control types are:


• Shunt: Turn all shunts on or off for all analog channels in bridge mode.

Note: This action can also be used during recording.

- Bridge balance: Perform bridge balancing for all active analog channels in bridge mode.
- Saturation data: Reset saturation data for all channels.

8.27.1 Control type: Shunt

	Control
Shunts off 3 0 Shunts on	E Properties Channels
	Control type Shunt
Turn on Turn off	Image: options Image: optional state Image: optional state Turn off shunts after Image: optional state Image: optional state
2	STYLE 5
	Show caption

No.	Function	Description
1	Caption	Control type title; shows the number of deactivated and activated shunts for all channels in bridge mode.
2	Control action	Action button to turn on/off all shunts for all channels in bridge mode; can be used during recording.
3	General properties	Select the desired control type
4	Control type-specific options	Checkbox to automatically turn off shunts after a specified duration (1 to 60 seconds).
5	Instrument style properties	Tick box to: - Enable/disable a transparent background Show/hide caption.

Table 8.6:	Control instrument settings shunt	t

8.27.2 Control type: Bridge balance

	Control
Bridge channels	Properties Channels
	GENERAL 3
	Control type Bridge balance
Balance	🗲 STYLE
	Transparent background
2	Show caption

Fig. 8.120: Control instrument properties for control type: Bridge balance

No.	Function	Description
1	Caption	Control type title; shows the number of channels in bridge mode.
2	Control action	Action button to perform a bridge balance for all channels in bridge mode.
3	General properties	Select the desired control type.
4	Instrument style prop- erties	Tick box to: - Enable/disable a transparent background Show/hide caption.

Table 8.7: Control instrument properties Bridge balance

8.27.3 Control type: Saturation data

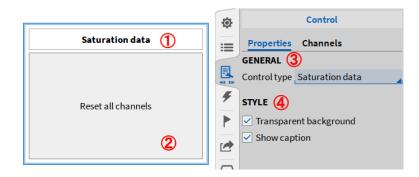
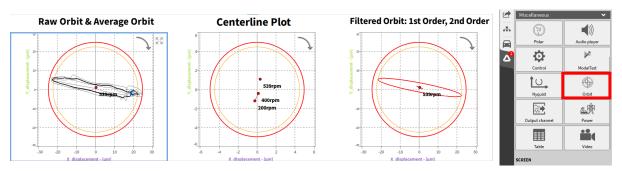
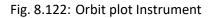


Fig. 8.121: Control instrument properties for control type: Saturation data


No.	Function	Description		
1	Caption	Control type title		
2	Control action	Action button to reset saturation information for all channels.		
3	General properties	Select the desired control type.		
4	Instrument style prop- erties	Tick box to: - Enable/disable a transparent background Show/hide caption.		


Table 8.8: Control instrument properties Saturation data

8.28 Orbit plot

The orbit plot is an instrument for displaying the rotational axis movement for e.g. turbine shafts. A minimum of 2 signals for the deflection of the shaft are always required. The angle between the X and Y signals on the test object is always assumed to be 90°.

The Orbit plot has three display options, which can be activated individually or in combination in the instrument settings, but some of them require different input signals. The scaling of the input channels must be carried out in advance in the channel list. The Orbit plot is a pure display instrument, i.e. there are no separate Orbit plot channels.

For the display options the following Input channels are required:

- Raw orbit & average orbit: X&Y deflection + optional angle and speed
- Centerline plot: X&Y deflection + angle + speed
- Filtered orbit: X&Y deflection + amplitude and phase in X and Y direction per order + angle + speed

For this view the order analysis license option (OXY-OPT-OA) is required.

The next figure shows an example for X- and Y-Probe arrangement. Additionally, the context of the orbit in a bearing is illustrated. The start and orbit direction are also displayed in OXYGEN.

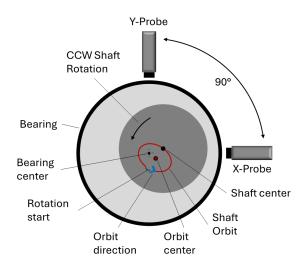
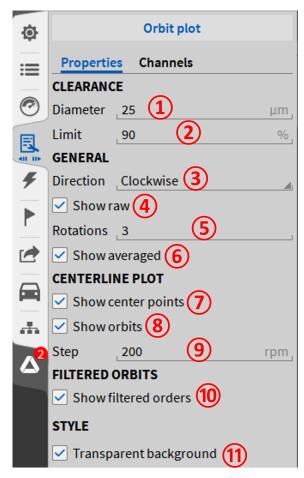
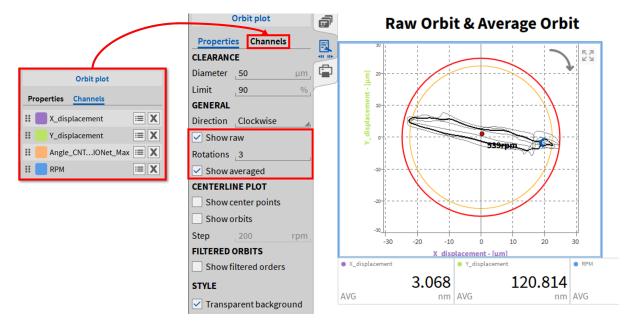
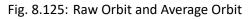


Fig. 8.123: X&Y Probe arrangement and Orbit overview




Fig. 8.124: Orbit plot Instrument properties


The settings (1), (2) and (3) are relevant for all orbit plot types, as the diameter (1) is used to set the rotation in relation to a circular clearance/bearing. In this view, the limit (2) helps to easily recognize when a movement radius is exceeded. The direction of rotation of the test can simply be marked via (3) but has no further effect on the display or calculation in the background. The other settings are explained in the following examples.

No.	Property	Description	
1	Diameter	Determines the display scale in the form of a red circle, representative of a clearance/bearing play.	
2	Limit	Limit display in % in relation to the clearance/bearing play diameter.	
3	Direction	For reporting purposes, the direction of rotation of the shaft is displayed in the instrument (clockwise/counter-clockwise)	
4	Show raw	Shows the unaveraged orbit of the rotation axis over x revolutions	
(5)	Rotations	s Defines the number of orbits displayed in (4) and (6).	
6	Show averaged	d Displays the average orbit over x revolutions. The revolutions for the center position are defined in (5).	
7	Show center points	Shows the calculated center of the orbits in x speed steps, which is defined in (9) .	
8	Show orbits	Also shows the center of the orbits between the defined speed steps.	
9	Step	Defines the speed increment for the center points (7) .	
10	Show filtered orders	Displays the filtered orbit	
1) Transparent background		Sets the instrument background to transparent	

Example of Raw orbit and Average orbit

X and Y deflection in length dimension are required for the raw and average orbit. If no angle and speed signal is assigned, OXYGEN plots one sample per degree and can therefore still estimate an average over x revolutions. In Fig. 8.125 three orbits are displayed in grey and their average is shown with a black and bold line.

Example of Centerline Plot

In addition to X and Y deflection, angle and speed are always required for the centerline plot. The center points are saved as a snapshot after a short dwell time close to the step size. The calculated center points can be displayed before the snapshot using Show orbits.

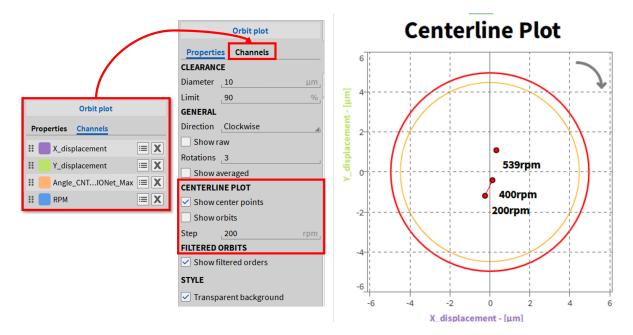


Fig. 8.126: Centerline Plot Example

Example of Filtered Orbit

Based on the amplitude and phase channels of the order analysis (from order analysis), filtered orbits can be used to display the orbit with the same or multiple fundamental frequency in relation to the speed. Speed and angle as well as X and Y deflection channels are required. Amplitude and phase must be assigned for X and Y for each order.

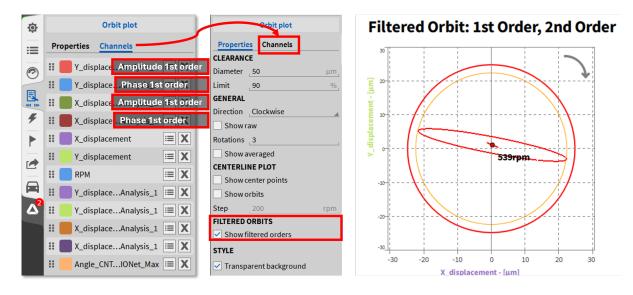


Fig. 8.127: Filtered Orbit Example for 1st and 2nd Ordnung based on Order analysis

8.29 Polar plot

The polar plot complements the orbit analysis and is also a pure display instrument without its own channel. The Polar Plot can be used to display a vector signal in polar coordinates, for example the amplitude and phase of the X deflection for the 1st order in relation to the speed of a shaft. In the polar plot, the amplitude is displayed as a radius and the phase as an angle. The amplitude and phase are calculated using order analysis.

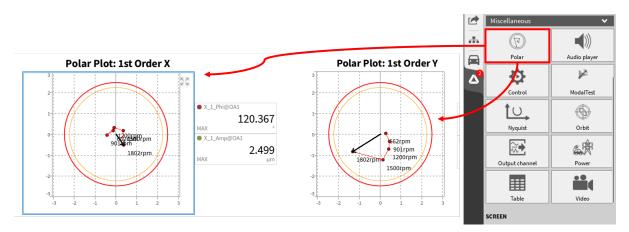


Fig. 8.128: Polar Plot Instrument Overview

Example of Polar Plot settings

Only rotational speed, amplitude and phase from order analysis (requires OXY-OPT-OA) are required for the polar plot. As in the orbit plot, the display is scaled via the free space/bearing clearance diameter (1) with a red circle and a limit (2) based on this. The steps in which the movement vector is marked by a point can be defined by speed or time (3) in the input field (4). The length of the polar vector represents the amplitude, and the angle represents the phase offset to the starting point of the encoder revolution. This means that for the following example at 2700 rpm, the maximum X-deflection is ~13 μ m and is ~145° offset from the speed signal.

Note: The Order analysis calculates the amplitude based on the RMS values, and for Peak or Peak-Peak scaling, the scaling must be done in the channel list.

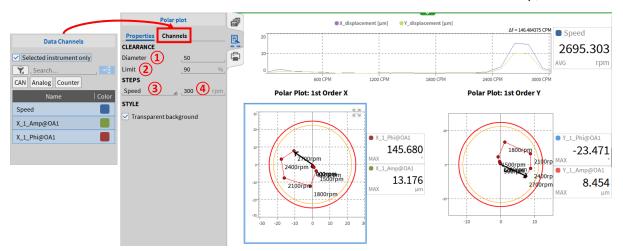
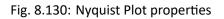



Fig. 8.129: Polar Plot properties and assigned channels

8.30 Nyquist Plot (SDOF circle fit)

The Nyquist plot is an instrument that can numerically determine the natural frequency, and the loss factor based on the frequency response function (FRF) channels from the Modal Test. The data is plotted in a circle and interpolated. There is also a corresponding screen template for this instrument.

Further information on the modal test and the Nyquist plot can be found in the Modal Test manual: DEWETRON_Oxygen_Modal_Technical_Reference_vx.x (https://ccc.dewetron.com/).

CHAPTER

NINE

TRIGGERED EVENTS

۰	Triggered Events				
=	Excarding Hode	Recording Mode			
8	Waveform recenting, Continuous	WEVEFORM			
4	Statiatics seconding, Window Is	Continuous	Profilme		
P	Individual channel configuration	Conthase	Pave after Post-time	<u>.0</u> 3	5. 1.
1	+ Add Event	Obubbel	C Patrices	. e.	
A.	- Aug Linen				
		STATISTICS Evaluation	Statistics window 1 1		
		Otabled			
		BENRYDUR			
			•		P
				7	~~_
		ADVANCED SETTINGS			
		Start measurement automati			
		Stop measurement after _1			
					×

Fig. 9.1: Trigger Events Menu – Overview

OXYGEN provides two different recording modes: The Waveform Recording and the Statistics Recording.

The *Waveform* Recording stores all channels that are enabled for recording @full sample rate into the data file.

The *Statistics* Recording stores only the statistical values MIN, MAX, AVG and RMS of an adjustable time window between 0.1 and 10 seconds into the data file. The Statistics Recording is also only done for the input channels that are enabled for recording.

Both recording modes can be enabled independently. The default software setting enables both *Continuous Waveform* Recording and *Statistics* Recording (Statistics window: 1 second).

If the user does not want OXYGEN to enable *Waveform* Recording for the complete recording time but only when certain input signal levels are reached, he can control that with the *Event Based Waveform* Recording (=Triggering) which is explained in the following sections.

Event Based Waveform Recording and Statistics Recording

A very useful combination is the *Event Based Waveform* Recording in combination with the *Statistics* Recording. Especially over long measurement periods with rare trigger events, the *Statistics* Recording gives the user the guarantee that data was recorded without consuming much hard disk space. In the

data file, the waveform data is plotted when the trigger event was active and otherwise the *MIN* and *MAX* value of the *Statistics* Recording data (see Fig. 9.2).

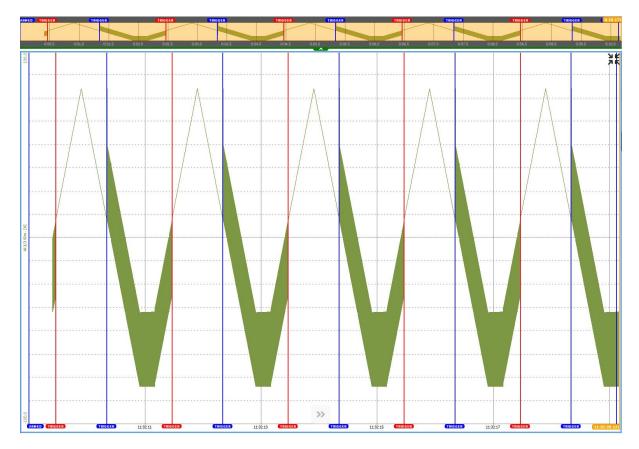


Fig. 9.2: Event Based Waveform Recording (marked in red) and enabled Statistics Recording

Automatic Measurement Start

OXYGEN offers the possibility to start the measurement automatically after the software has started. To activate the Automatic measurement start, enlarge the Triggered Events menu to the full screen and check *Start measurement automatically* in the *Advanced Settings* (see Fig. 9.3).

_				
٩	Triggered Events			
≔	Recording Mode	Recording Mode		
Ξ.	Waveform recording, Continuous	WAVEFORM		
4	Statistics recording, Window 1s	Continuous	•	s,
•	Individual channel configuration	Pause after	L ⁰	s.,
			_2	s,
 	+ Add Event	Disabled		
		STATISTICS		
		Enabled Statistics window 1		
4		Disabled		
1		BEHAVIOUR		
		↓	¥	
		· · · · · · · · · · · · · · · · · · ·	~ /~~~~	
			Land L	
		ADVANCED SETTINGS		
		Start measurement automatically		
		Restart acquisition on measurement start Stop measurement after , 1 s ,		
		Stop measurement after 1 s		
				Ĭ

Fig. 9.3: Triggered Events menu, Automatic measurement start

In case of *Continuous Waveform Recording* (refer to *Triggered Events*), the measurement will start automatically after OXYGEN has started and makes the manual press of the Recording button obsolete (see (8) in Fig. 3.5).

As DEWETRON measurement systems start automatically after they are connected to a power supply, the measurement can start automatically after the measurement system is powered without any interaction of the user. To start OXYGEN automatically, the startup setting "Automatically start OXYGEN at log on" can be enabled.

Fig. 9.4: AutoStart option at startup settings

The *Restart acquisition on measurment start* checkbox enables calculated channels and CNT channels to be reset when recording is started.


In case of *Event based Waveform Recording* (refer to *Triggered Events* and *Record action*), the measurement will start automatically when the Start Recording condition (see *Record action*) is active. Therefore, it is not necessary to arm the trigger manually anymore (see *Arming the Trigger*).

V

OXYGEN Online Help, Release 7.6

9.1 Adding a Trigger Event

Recording Hode	Recording Mode			
Waveform recording, Triggered	WAVEFORM			
Statistics recording, Window Is		Presme	.0	×.
Individual channel configuration	Continuous	Pause after	0	в,
·	Event based	Post-time	.0	s.,
Add Event	Disabled	No valid recording start action defined		

If the Event Based Recording is activated, the user must add one or several Trigger Events that regulate the recording start. This can be done via the +Add Event button (see Fig. 9.5). Optionally the user can also store the data before the trigger event was reached by adding a *Pre-time* between 0 and 500 seconds and he can also define a time after which the record is paused automatically (*Pause after*). To increase the pre-time, increase the capacity of the freeze buffer, see *Advanced settings*.

9.2 Adding an Event Condition

After an event was added, the user must define an event condition and assign a data channel that is surveilled by the event condition:

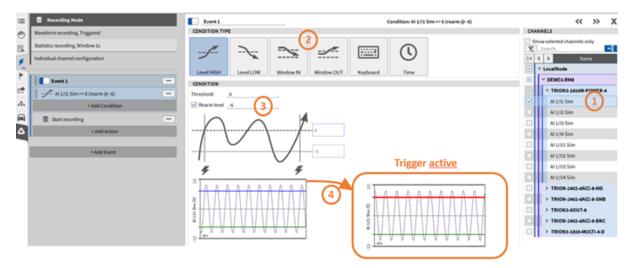


Fig. 9.6: Define an Event Condition and Trigger on Level HIGH

The channel to be triggered on can be selected from the channel list on the right screen side (see (1) in Fig. 9.6). After selecting the channel, a preview window is displayed (see (4) in Fig. 9.6). The measuring range displayed in the preview window is the set measuring range of the channel to be triggered. The preview window also contains the set threshold and rearm level. As soon as the threshold value is exceeded and the trigger is active, the line for the threshold value in the preview window changes color from blue to red. The user can select between six different event conditions (see (2) in Fig. 9.6):

- Level HIGH: Activate Event if selected signal exceeds defined Threshold. A *Rearm* Level that must be passed before the trigger is activated again can optionally be defined (see ③ in Fig. 9.6).
- Level LOW: Activate Event if selected signal falls below defined Threshold. A *Rearm* Level that must be passed before the trigger is activated again can optionally be defined (see Fig. 9.7).

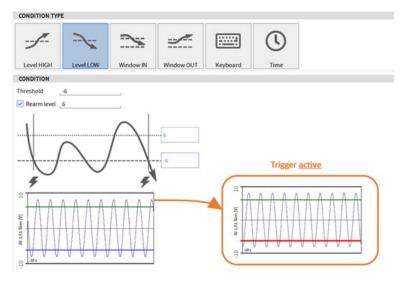


Fig. 9.7: Trigger on *Level LOW*

• Window IN: Activate Event if selected signal is within a certain range. The user can define an upper and a lower limit (see Fig. 9.8). A *Rearm* Level that must be passed before the trigger is activated again can optionally be defined for the lower and upper limit (see 1) in Fig. 9.8).

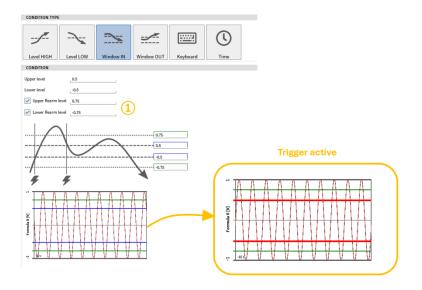


Fig. 9.8: Trigger on Window IN

• Window OUT: Activate Event if selected signal is out of a certain range. The user can define an upper and a lower limit (see Fig. 9.9). A Rearm Level that must be passed before the trigger is activated again can optionally be defined for the lower and upper limit (see 1) in Fig. 9.9).

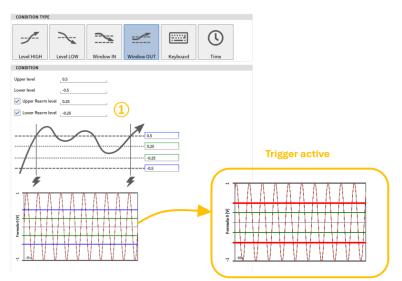


Fig. 9.9: Trigger on Window OUT

• Keyboard Event: Control Trigger via the keyboard. The user can select two different states: *True while hold* activates the Event if the selected key is pressed and *Toggle when pressed* toggles between activating and deactivating the Event every time the button is pressed. The key can be selected with a click on the field right to *Shortcut*. In this example, the Space key was selected.

CONDITIO	ON TYPE				
7	~		\sim		::::::
Level H	HIGH	Level LOW	Window IN	Window OUT	Keyboard
CONDITIO	DN				
		while hold			
State	• Togg	le when pressed			
Shortcut		Space	1		
			1		
		·	•		

Fig. 9.10: Trigger on Keyboard Event

• Time Event: The event is activated in the dependency of a time condition. In the example in Fig. 9.11, the event is activated every 30 minutes for a duration of 1 minute, starting at 15:48:47 on Wednesday 14th of December 2022. If the *Active for* option is not enabled, the Event will be active for one Sample interval, i.e. for 1 ms if the sample Rate is 1 kHz. The red indicator (see (1) in Fig. 9.12) won't highlight if the *Active for* option is not enabled.

CONDITION TYPE	E						_					
		<u>~</u> *		:: <u>:::</u> :	C)						
Level HIGH	Level LOW	Window IN	Window OUT	Keyboard	Tir	ne						
CONDITION	ne .We	dnesday, Decembe	r 14, 2022 3:48:47 P	M (UTC +1)	1	<	D	ecer	nbe	r 202	22	>
Trigger interval	и _0	h, : .3	10 min, :	0 s		Sun	Mon	Tue	Wed	Thu	Fri	Sat
Active for	.0	h, : 1	i min, :	0 s	,	27	28	29	30	4	2	3
Next trigger times			14, 2022 4:18:47 PI				8		7			10
			14, 2022 4:48:47 PI 14, 2022 5:18:47 PI			-	12	13	- 59	15	16	17
						18	19	20	21	22	23	24
						25	26	27	28	29	30	н
						1		3	4	5	6	
									Today	1		
						Time	15	_h, :	48	min,	. 47	5
							Can	cel		(Dk	

Fig. 9.11: Trigger on Time Event

Note:

- The red indicator shows if the respective event is active or not (see (1) in Fig. 9.12)
- The blue switch deactivates the event permanently (see (2) in Fig. 9.12)
- The deletes the event (see 3 in Fig. 9.12)
- It is possible to add several Event Conditions to the same event

Fig. 9.12: Trigger Menu - Additional information

9.3 Adding an Event action

After the Event Condition is configured the user must define an action that shall be performed when the event is activated, the *Event Action*. Four different actions are available: A *Record* action, an *Alarm* action, a *Marker* action and a *Snapshot* action. Each action has a submenu with different possibilities that are explained in the following sections.

Note: It is possible to add several Event Actions to the same Event

9.3.1 Record action

Record ION	Alarm	Marker	Snapshot	Arm			
Start recording		O Par	use recording				
Record event		Ото	O Toggle recording				
Stop measurem	nent						

Fig. 9.13: Trigger - Recording Actions

- Start Recording: Starts the recording mode when the event is activated
- Pause Recording: Pauses the recording mode when the event is activated
- *Record Event*: Recording is enabled if the event is active
- Toggle Recording: Toggles recording status if the event is activated
- Stop measurement: Stops the recording mode when the event is activated

Post-time: a post-time can be defined in the trigger menu overview (see Fig. 9.1 or Fig. 9.5). If activated, the recording stops after the defined time when the stop measurement event is activated. For example, if a post-time of 5 seconds is defined, the recording stops 5 seconds after the actual condition with the stop measurement action was defined (see Fig. 9.14).

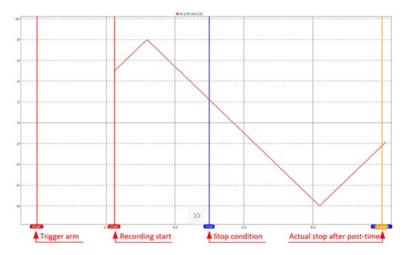


Fig. 9.14: Trigger – example of stop measurement action with post time

9.3.2 Digital Out action

ACTION T	YPE				
	•	·``		0	0
Record	OUT	Alarm	Marker	SNAP	Arm
ACTION					
Delay DO channels for			0		S
Auto reset DO channels after			5		S
• Digita	al out - HIG	H on trigger			
O Digita	al out - LOV	V on trigger			

Fig. 9.15: Trigger – Digital Out Action

This can be used to create a heartbeat signal and works like the alarm trigger, however without counting the alarm in the overview bar.

- Delay DO channels for: Duration until the digital channel is triggered.
- Auto reset DO channels after: Duration after which the digital channel is set to the default state and can be triggered again.
- Digital out HIGH on trigger: Digital channel is set to HIGH on trigger.
- Digital out LOW on trigger: Digital channel is set to LOW on trigger.

9.3.3 Alarm action

ACTION TYPE					ONN	INELS
-	14			-	T.	Seech.,
	-`@`-			6	ξ×.	< > Name
9		1				∀ LocalNode
Record	Narm	Marker	Snapshot	Arm		V DEWES-RMA
ACTION						V TRIONS ADUTA
Add marker on A	larm					00 6/1 Sim
Delay 50 channel	hilar _0					00 4/2 Sim
Auto reset DO ch	enebalter_1					00 6/3 Sim
Digital out - HE	91 on alarm					00 6/4 Sim
						00 4/5 Sim
Digital out - LO	W on alarm				10	00 4/4 Sim

Fig. 9.16: Trigger - Alarm Actions

- Add marker on Alarm: A marker will be set when the event is activated
- *Define delay for digital output*: The digital output is only set to LOW or HIGH after the defined delay.
- *Define delay for automatic reset of digital output*: The digital output is only reset after the defined delay.
- *Digital out HIGH on alarm*: The status of a digital out channel will be set to High when the Event is activated. The channel(s) can be selected from the channel list on the right-hand side. An automatic reset of the channel after 0 3600 seconds can optionally be selected.
- *Digital out LOW on alarm*: The status of a digital out channel will be set to Low when the Event is activated. The channel(s) can be selected from the channel list on the right-hand side. An automatic reset of the channel after 0 3600 seconds can optionally be selected.

Note:

• To use connected digital channels as *Digital Out* channels the Channel Mode must be set to *Digital Out* in the *Data Channels* menu (see Fig. 9.17).

~	∦ ×	Active	Stored	Channel	I	Color	Setup	Scal	ed Value	Mode
~			DEWE2-A4							
			TRION-BASE							
	~		DI 1/1 Si	n	TRION-BASE		@	0.499800	AVG	Digital Out
			DI 1/2 Sin	n	TRION-BASE		ŵ	0.500200	AVG	Digital In
			DI 1/3 Sin	n	TRION-BASE		@	0.499800	AVG	Digital Out

Fig. 9.17: Changing the channel mode of a digital channel

• The number of alarms is counted and displayed in the Action bar. To quit the alarms, click on the bell symbol in the action bar and click on the green check mark (see Fig. 9.18).

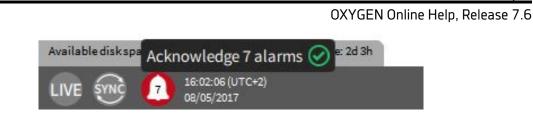


Fig. 9.18: Alarm Counter

• An Alarm Action can also be selected if Continuous Waveform Recording is enabled and does not have to be event based.

9.3.4 Marker Action

Fig. 9.19: Trigger - Marker Action

This action adds a marker with a user defined marker text.

- On active only: Marker is only set if the event is activated
- On inactive only: Marker is only set if the event is deactivated
- On active and inactive: Marker is set if the event is activated and if the event is deactivated

Note: A Marker Action can also be selected if Continuous Waveform Recording is enabled and does not have to be event based.

9.3.5 Snapshot Action

Ø
Arm
Average value
O MAX value
ACRMS value

Fig. 9.20: Trigger - Snapshot Action

The Snapshot action can be used to query the Actual Value, Average, MIN, MAX, RMS, ACRMS or Peak2Peak value of one or several channels that may be selected on the right-hand side of the menu (see 1) in Fig. 9.6) and copy this value to a new channel. This channel is added to the Channel List and can be found in the *Snapshot: Event x* section (see Fig. 9.21). If a statistical value is selected, the calculation time interval can be defined in the *Snapshot window* input field (see Fig. 9.20). The time interval is applied prior to the activation of the event.

Fig. 9.21: Snapshot channel in the Channel List

Note: The same snapshot action can be applied to several channels by selecting them in the Channel list on the right-hand side (see Fig. 9.22). An own snapshot channel for each selected channel is created in the Channel List (see Fig. 9.23). Selecting several channels in the Snapshot Action menu will result in an own snapshot channel in the Channel List for each selected channel

Waveform nearling, biggend	ACTION TYPE		OSAN	NELS
Statistics recording, Window is		0		Search
Individual channel configuration		0	-	V LocalNole
-	Record Narm Marker Snapshot	Arm		Y DEWEX-RHS
Entipis 1 -	ACTION		•	V TRON-SISSIN POWER-4
🛛 🕞 Sherkut Space/Hall	Athal salar	Arrage value		A ULSIN
+ Add Condition	O HN value	0 100 value		A L/Q Sim
O Snapher of A 1/2 Sim, A 1/2 Sim, A 1/2 Sim, A 1/4 Sim		() not use		ALU05m
+ Add Action	O RMS value	ACIME value		ALL'N Sm
* ADD ACCON	O Pask/Pask value			AU/USm
Enigeis 2 -				Astesia
	Snapshot window 1 4		-	a contra

Fig. 9.22: Selecting several channels in the Snapshot Action menu

Sn	apshot: Event 1					
	2/3 Sim_ACT /3 Sim	Snapshot	\$	NaN -10	AVG 10	ACT
	2/2 Sim_ACT	Snapshot	٩	NaN -10	AVG 10	ACT
	2/1 Sim_ACT	Snapshot	\$	NaN -10	AVG	ACT
	2/4 Sim_ACT /4 Sim	Snapshot	¢	NaN -10	AVG 10	ACT

Fig. 9.23: Snapshot channel in the Channel List for each selected channel

9.3.6 Activate Trigger action

₽	Triggered Events		
:=	Recording Mode	Event 1	Action: Arm measurement
0	Waveform recording, Triggered	ACTION TYPE	
E.	Statistics recording, Window 1s		0
F	Individual channel configuration	Record OUT Alarm Marker SNAP	Arm
-		ACTION	
1	Event 1	Enable action	
	Al 1/1 Sim>= 0		
-	Arm measurement		
	I Constanting of the second seco		
	Event 2		
	Start recording		

Fig. 9.24: Trigger - Actviate Trigger action

The *Activate trigger* action can be used to automatically arm and thus activate other set trigger actions. After the trigger condition has been met, eventbased recording is enabled and recording starts and pauses according to the defined trigger events. Measurement data is stored in ONE file. This action can also be performed manually (see Fig. 9.24).

9.4 Arming the Trigger

If Event Based Waveform Recording is selected, a flash will appear within the sign of the record button (see Fig. 9.25).

Fig. 9.25: Action bar with enabled Event Based Waveform Recording

After pressing the record button, the *Event Based Waveform* Recording is armed and the recording will be started and paused according to the defined trigger events. Measurement data will be written to ONE data file.

Note: If the trigger condition is active while arming the trigger, the trigger will not be detected as the trigger condition is not passed.

9.5 Application Examples

9.5.1 Event Based Waveform Recording triggered by an input channel

Example 1

Challenge: Start Recording when the value of a certain analog input channel exceeds 1 and Pause Recording again when the value exceeds 2.

.

• Select Event based Waveform Recording as Recording Mode (see Fig. 9.26):

00	Recording Mode							
WAVEFORM								
С	Continuous							
•	Event based							
С	Disabled							

Fig. 9.26: Event based Waveform Recording selection

• Add an Event. Select *Level High* as *Condition Type* and set the *Threshold* to 1. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Fig. 9.27):

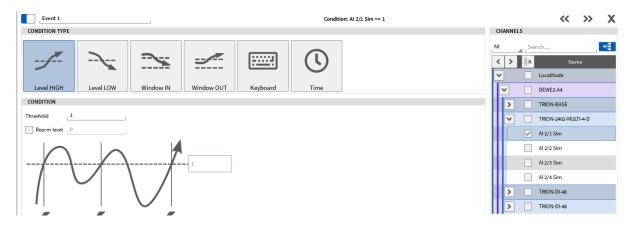


Fig. 9.27: Level High Condition Type; Threshold: 1

• Select Start recording as Action Type (see Fig. 9.28):

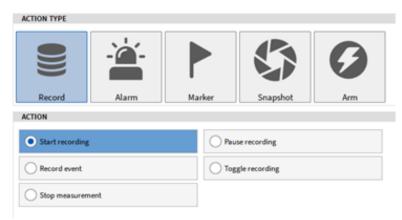


Fig. 9.28: Start Recording Action Type

• Add another event. Select *Level High* as *Condition Type* and set the *Threshold* to 2. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Fig. 9.29):

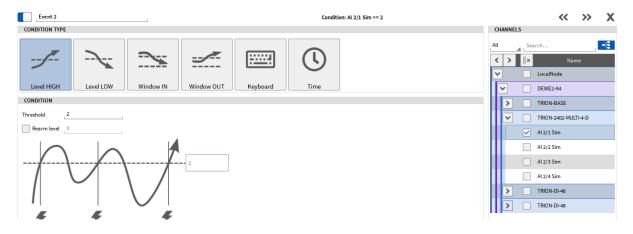


Fig. 9.29: Level High Condition Type; Threshold: 2

• Select Pause recording as Action Type (see Fig. 9.30):

ACTION TYPE							
Record	Alarm	Marker	Snapshot	G Am			
ACTION							
◯ Start recording		Par	use recording				
O Record event			O Toggle recording				
Stop measurem	ent						

Fig. 9.30: Pause Recording Action Type

Example 2

Challenge: Record data every time the value of an analog input channel is within 1 and 2. The difference to the example above in *Example 1* is that in Example 1 data recording is not started when the value decreases below 2 and does not pause the recording when the value decreases below 1. In this Example 2, it is the case as well.

• Select Event based Waveform Recording as Recording Mode (see Fig. 9.31):

Recording Mode	
WAVEFORM	
Continuous	
Event based	
Disabled	

Fig. 9.31: Event based Waveform Recording selection

• Select *Window IN* as *Condition Type* and set the *Lower level* to 1 and the *Upper level* to 2. Select the analog input channel to be triggered on in the Channel List on the right-hand side (see Fig. 9.32):

Event 3	Condition: AI 2/1 Sim IN [12]		~~	>>	Χ
CONDITION TYPE		CHANNELS			
		All Search	Name		-
Level HIGH Level LOW Window IN Window O	UT Keyboard Time	DEW	E2-A4		
CONDITION			N-BASE		
Upper level 2			N-2402-MULTI-	4-D	
Lower level 1		Al 2/	1 Sim		
		AI 2/	2 Sim		
2		Al 2/	3 Sim		
\land		AI 2/	4 Sim		
1			N-DI-48		
			N-DI-48		
7 7					

Fig. 9.32: Window In Condition Type; 1...2

• Select Record Event as Action Type (see Fig. 9.33):

ACTION TYPE				
Record	Alarm	Marker	Snapshot	G
ACTION				
◯ Start recording		0	Pause recording	
Record event		01	loggle recording	
Stop measurem	ent			

Fig. 9.33: Record Event Action Type

9.5.2 Time Triggered Data Recording

Challenge: Record data every 60 minutes for 2 minutes.

• Select Event based Waveform Recording as Recording Mode (see Fig. 9.34):

Recording Mode	
WAVEFORM	
Continuous	
• Event based	
Disabled	

Fig. 9.34: Event based Waveform Recording selection

• Select the *Time* Condition and enter *1h* as *Time interval* and enable *Active for 2 min*utes (see Fig. 9.35):

Waveform recording, Triggered	CONDITION TYPE					
Statistics recording, Disabled	-	>	<u> </u>			\square
	2					
Event 1	Level HIGH	Level LOW	Window IN	Window OUT	Keyboard	Time
Time: Interval set to 01:00:00, Hold set to 00:02:00	CONDITION					
+ Add Condition	Trigger interval	1	h. : 0	min : 0	S	
Record event	Active for	0	h : 2	min : 0	S	

Fig. 9.35: Recording every 60 minutes for 2 minutes

• Select Record Event as Recording Action Type (see Fig. 9.36):

Recording Wede	Ereignis 1	
Waveform recording, Triggered	ACTION TYPE	
Statistics recording, Window 2s		
Individual channel configuration		
	Record Alarm	Marker Snapshot Arm
Evelgels 1	- ACTION	
Shortcut: Space (Hold)	- Startmonding	Pause recording
+ Add Condition	Record event	Taggie recording
Record event	-	U Teggle recording
+ Add Action	Step measurement	

Fig. 9.36: Record Event Action Type

9.5.3 Data Query using the Snapshot Action

Challenge: When the space key is pressed, the RMS value 0.5s prior to the event of 4 analog input channels shall be queried using the snapshot action. When the space button is pressed, a marker shall be added to the time position and a Digital Out channel shall be set to High state.

• Select Continuous Waveform Recording as Recording Mode (see Fig. 9.25):

Recording Mode	
WAVEFORM	
 Continuous 	
 Event based 	
O Disabled	

Fig. 9.37: Continuous Waveform Recording selection

• Select Keyboard Condition Type and True while hold as Condition State with the Space key as Shortcut (see Fig. 9.38):

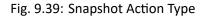
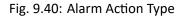

CONDITIO	ON TYPE					
フ	<u> </u>		<u>~</u>			U
Level	HIGH	Level LOW	Window IN	Window OUT	Keyboard	Time
CONDITI	ON					
State	• True	while hold				
State		gle when pressed				
Shortcut		Space				

Fig. 9.38: Space Key Condition type

• Select *Snapshot* as *Action Type* and select *RMS value* as *Action* with a *Snapshot window* of *0.5s*. The analog input channels used for the data query can be selected in the channel list on the


right-hand side (see Fig. 9.40). Data will be queried in the moment the Event configured above is activated.

ACTION TYPE		OUA	NNE	15
		٩,	13	Search,
	4	₿x	<	> Name
			۲	LocalNode
Record Alarm Marker Snapshot	Arm			V DEWEJ-RM8
ACTION			Ι	V TRION3-1816M POWER 4
Actual value	Average value		II	Al 1/12 Sim
O m i	O market			AI 1/12 Sim
MIN value	O MAX value			Al 1/18 Sim
RHS value	ACRHS value		I	Al 1/14 Sim
Peak2Peak value				AI 1/UE Sim
-				Al 1/Uz Sim
Snapshot window 0.5 5				Al 1/US Sim

To set the Digital Channel to High state, add another Action by pressing the +Add Action button, select Alarm Action Type and select Digital out – High on alarm as Action. The Digital out channel to be set can be selected in the channel list on the right-hand side (see Fig. 9.39). The channel mode of the desired Digital channel must be set to Digital out in the Channel List (see Fig. 9.17).

• To add a Marker in the data file at the instant of time the Event is activated and data is queried, add another Action by pressing the +Add Action button, select Marker Action Type and select On active only as Action. A marker is now added when the Event is activated.

Recording Mode Waveform recording, Continuous		Event 1 ACTION TYPE
Statistics recording, Disabled		
Event 1 Shortcut: Space (Hold)	-	Record Alarm Marker Snapshot
+ Add Condition		ACTION Marker text: Event 1
Snapshot of AI 2/1 Sim, AI 2/2 Sim, AI 2/3 Sim, AI 2/4 Sim	-	On active only
ALARM, set 1 channel(s) to HIGH	-	On inactive only
Add Marker "Event 1" (Active)	-	On active and inactive
+ Add Action		

Fig. 9.41: Marker Action Type

V

OXYGEN Online Help, Release 7.6

9.6 Advanced Storing Modes

The advanced storing modes are available in the Trigger Menu, in the individual channel configuration section (see 1 in Fig. 9.42). The individual channel configuration includes the following options:

- Store channels at different sample rates on triggered events
- Choose between different options for the statistics data
- Set different time windows for the statistics data for individual channels

In order to activate the individual channel configuration click on the checkbox button Customize settings per channel (see (2) in Fig. 9.42).

\$	Triggered Events										
:=	Recording Mode		Indiv	dual Cl	hannel Configuration						
0	Waveform recording, Triggered	2			settings per channel						
	Statistics recording, Window 1s			Analo		Search	-6	«			>>
4	Individual channel configuration			< > ~ Loo	calNode	Name	Color	Sample Rate	Waveform Mode	Statistics Mode	Statistics Window
-				v •	DEWE2-PA7						
<u>r</u>	Event 1	-		_	TRION-1820-POWER-4						
		-			Al 1/l1 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
đ	+ Add Condition				Al 1/l2 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
	Start recording	-			AI 1/I3 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
î	+ Add Action				Al 1/l4 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
ľ,		_			Al 1/U1 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
	+ Add Event				AI 1/U2 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
					Al 1/U3 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
					Al 1/U4 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
				×	TRION-1820-MULTI-4-D		_				
					Al 3/1 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
					Al 3/2 Sim		_	10000 Hz	Default	Min/Max/Avg/RMS	Default
					Al 3/3 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default
					Al 3/4 Sim			10000 Hz	Default	Min/Max/Avg/RMS	Default

Fig. 9.42: Individual channel configuration in Trigger Menu

In this channel configuration some known settings from the Data Channel List can be found, like the channel filter or color bar. These settings are described in *Data channels menu*. To keep the overview the three relevant columns for the individual channel configuration will be explained here:

- Waveform Mode
- Statistics Mode
- Statistics Window

Note: The sample rate is shown here, just like in the data channel list, but it *cannot* be changed in this configuration menu. In order to change the sample rate for individual channels, go to the Data Channel list and refer to *Channel-wise Sample Rate Selector*, where it is described in detail how to change sample rates channel-wise.

9.6.1 Waveform Mode

	Waveform Mode	I
_		_
	Default	
	Default	÷.
	Continuous	

The Waveform Mode offers two different options seen in Fig. 9.43.

Default refers to the settings, which were made in the trigger menu. For details about the settings in the trigger menu, refer to *Triggered Events*. *Continuous* means, that the channel will always be stored, from the moment the trigger will be armed, and the trigger settings will be ignored. In this case this button in the action bar acts as the normal *Recording start* button.

Only after the event happens, the other channels with the default setting will also be stored with the defined sample rate. An exemplary representation on when and what channels are stored is shown in Fig. 9.44. Whenever the trigger is armed on the measurement screen in the action bar, the channels with the Waveform Mode *Continuous* are stored from that moment on. At the time the set events happen, also the channels with the Waveform Mode *Default* are stored at the defined sample rate.


Fig. 9.44: Representation of Continuous and Default Storing Mode

The selected sample rate at which the channel will be stored can be seen in the Sample Rate column. To change the sample rate, go to the Data Channel list.

Note: In case the Waveform Mode of a whole Power Group (all parameters within the Power Group) wants to be changed, the checkbox of the Power Group has to be specifically selected before changing the Waveform Mode (see Fig. 9.45). If only the row of the channel is clicked on, the Mode does not change for the individual Power channels. Of course, all the parameters of the Power Group can also set to an individual Waveform Mode.

Fig. 9.43: Options for Waveform Mode in Advanced Storing Modes

9.6.2 Statistics Mode

The statistics mode offers different possibilities seen in Fig. 9.46.

- Off: No statistics data will be calculated or stored for this channel
- Min/Max/Avg/RMS: these four values are calculated as statistical values for the channel
- Skip: Only the first sample of the set statistics window is stored

	Statistics Mode
_	
	Min/Max/Avg/RMS
	Off
1	Min/Max/Avg/RMS
	Skip

Fig. 9.46: Options for Statistics Mode in Advanced Storing Modes

9.6.3 Statistics Window

The time window to calculate the statistics data can be set individually per channel, seen in Fig. 9.47.

Default refers to the settings for the statistics data in the trigger menu, see Fig. 9.48.

For the time window a value from the drop-down list can be chosen or a value from $\frac{1}{\text{sample rate}}$ up to 10 s can be entered.

Statistics Window
Default
Default
10
1
0.5
0.1
0.01 Derautt

Fig. 9.47: Options for Statistics Window in Advanced Storing Modes

Recording Mode		
WAVEFORM		
Continuous	Pre-time Stop after	
 Event based 		
Disabled		
STATISTICS		
• Enabled	Statistics window	_ 1 s_
Disabled		

Fig. 9.48: Settings for Statistical Data in Trigger Menu

Note: If the Statistics Data is disabled in the trigger settings (see Fig. 9.48), the columns Statistics Mode and Statistics Window disappear and are not shown in the Individual Channel Configuration anymore.

9.6.4 Example

This section describes an example, to give a better understanding of the Advanced Storing Modes.

Fig. 9.49 and Fig. 9.50 both show the settings, which were made. This example shows how to continuously store the power parameters but only store the raw data in case of an event. For the raw data also different sample rates are set (refer to *Channel-wise Sample Rate Selector*) and different settings for the statistics data.

Triggered Events	
Recording Mode	Event 1
Waveform recording, Triggered	
Statistics recording, Window 1s	
Individual channel configuration	
	Level HIGH Level LOW Window IN Window OUT
Event 1 -	CONDITION
	Threshold 9
+ Add Condition	Rearm level 8
Start recording	
+ Add Action	
+ Add Event	
	7 7

Fig. 9.49: Example: Trigger Event Settings

Indiv	idua	l Channel Configuration						
🖌 C.	stom	ize settings per channel						
٩,	A	nalog Power	Search	-E	«			> >>
1	<	>	Name	Color	Sample Rate	Waveform Mode	Statistics Mode	Statistics Window
	۷	LocalNode						
	2	Power Groups						
	C	> Power Group				Continuous		
	~	DEWE2-PA7						
		TRION-1820-POWER-4						
	П	0			200000 Hz	Default	Min/Max/Avg/RMS	0.001 s
	П	u			200000 Hz	Default	Off	Default
	Ш	U .			200000 Hz	Default	Off	Default
	Ш	Unet			10000 Hz	Default	Min/Max/Avg/RMS	0.1 s
	П	U_1			200000 Hz	Default	Min/Max/Avg/RMS	Default
		U_2			200000 Hz	Default	Skip	0.5 s
	П	U_3			200000 Hz	Default	Skip	Default
		U_net			10000 Hz	Default	Min/Max/Avg/RMS	0.1 s

Fig. 9.50: Example: Individual Channel Configuration Settings

1. To continuously store the power parameters the *Waveform Mode* is set to *Continuous* (consider the note in *Waveform Mode*).

Whenever the trigger will be armed, all those parameters are recorded and stored.

- 2. The other channels of the TRION-1820-POWER-4 card are set to the Waveform Mode Default. This means, that the trigger event settings are considered here. By looking at Fig. 9.49 it can be seen, that the recording will be started whenever the *Trigger Channel* rises above the defined threshold of 9 V. At this point the raw data channels are also recorded and stored with a sample rate of 200 kHz, or 10 kHz for channel *I_net* and *U_net*.
- 3. Additionally, those channels have different settings for the Statistics Data.
 - a. Channel I_1: The Min/Max/Avg/RMS value will be stored for a time window of 0.001 s.
 - b. Channel *I_2* and *I_3*: Statistics Data is turned off and will not be calculated nor stored.
 - c. Channel I_net: The Min/Max/Avg/RMS value will be stored for a time window of 0.1 s.
 - d. Channel U_1: The Min/Max/Avg/RMS value will be stored for the default time window, which is set in the trigger settings and is per default of 1 s.
 - e. Channel U_2 : only the first sample of the defined time window of 0.1 s is stored.
 - f. Channel U_3 : only the first sample of the default time window of 1 s, which is set in the trigger settings, is stored.
 - g. Channel U_net: The Min/Max/Avg/RMS value will be stored for a time window of 0.1 s.

The individual channel configuration should be done carefully to make the right settings, since complex setups can be created like this.

CHAPTER

TEN

EVENT LIST

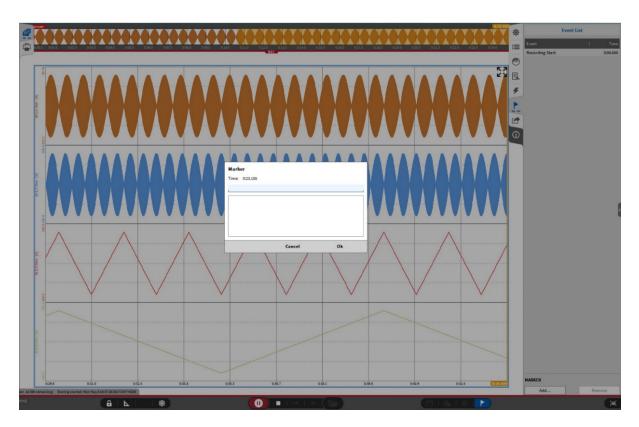


Fig. 10.1: Adding a Marker

During an active recording, the user can add markers in its measurement to add additional information at a certain point of time. Therefore, the user must click on one of the both buttons marked in Fig. 10.1 and a pop-up window will appear. In this window, the user can add the additional information to the marker. After clicking on *OK*, the marker will show up in the Event List. The Marker will be added to the instant of time with the respective timestamp after clicking on one of the both buttons and not only after clicking *OK*.

This list will also be saved to the data file. When a data file is reviewed in the *PLAY* mode, the Markers are displayed in the Overview bar as well as in a Recorder Instrument and will show up in the Event List (see Fig. 10.2). Further markers can be added in the *PLAY* mode as well.

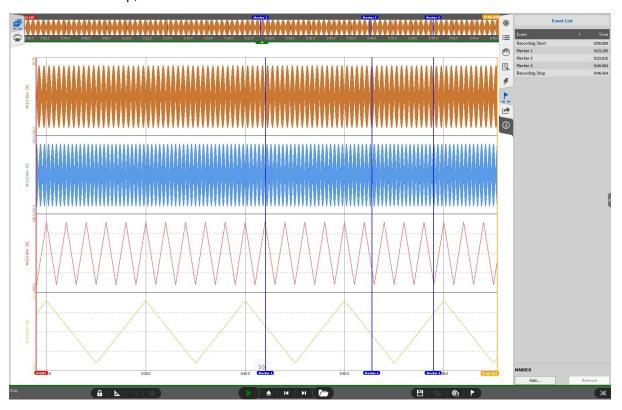


Fig. 10.2: Marker review in the PLAY mode

Note:

- The Marker option is only available in the *REC* mode and in the *PLAY* mode, not in the *LIVE* mode.
- If Markers are generated with the *Marker* Action during Event triggering (see *Marker Action*), they will show up in The Event List as well.
- To remove a marker again just select the respective one in the Event List and click on the *Remove* button which is located next to the *Add* button.
- In the *PLAY* mode, the orange cursor jumps to the individual *Event* by clicking on the *Time* of the *Event* or *Marker* in the *Event List*.

When opening the Event List menu to the full screen it is possible to select the time format and timestamp precision [ms], which should be displayed in the Event List.

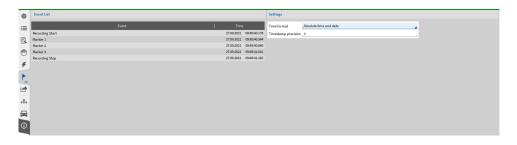


Fig. 10.3: Event List menu - full screen

Time format	Absolute time and date
Timestamp precision	Auto
	Absolute time and date
	Absolute time
	Relative time

Fig. 10.4: Event List menu - timestamp selection

The following options are available:

- Auto
- Absolute time and date: this can be useful when recording over several days, in order to see the date for each event
- Absolute time
- Relative time

Addidtionally, the timestamp precision can be chosen between 0 and 9 digits [ms].

CHAPTER

ELEVEN

EXPORT SETTINGS

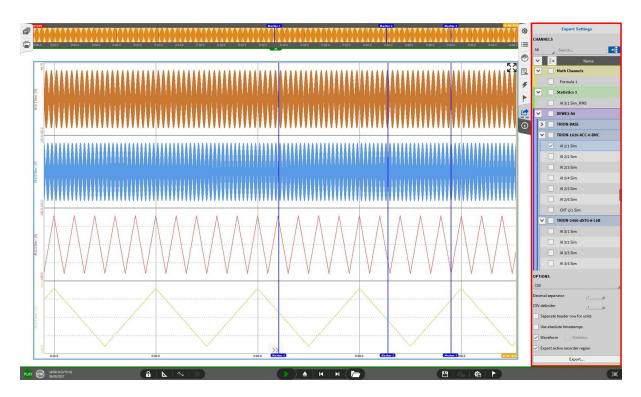


Fig. 11.1: Export Settings – Overview and export options for a *.csv-file

In *PLAY* mode, the user can export the recorded data into the following formats:

Table 11.1: Export formats

Export formats	
*.csv-file	*.txt-file
*.mdf4-file	*.mat-file
*.xlsx-file	*.rsp (rpc III)-file
*.wav-file	*.dat-file (DIADEM)
*.nt-file (DynaWorks)	*.h5-file
*.uff-file (Universal File Format 58; Binary and ASCII)	*.imc-file (FAMOS)
*.tdms-file (LabVIEW)	*.nc-file (NetCDF)
*.datx-file (DSPcon)	

The user can select the channels to be exported in the channel list displayed in the Export Settings (Fig. 11.1).

To change the order of exported channels, use the order tab in the export menu. Select channels to be exported (1) and click on the Order tab (2). Next switch the order of channels to your requirements (3). To use this changed order, tick the "Export in configured order" checkbox before exporting the channels. This results in an individual channel order in the exported file (5).

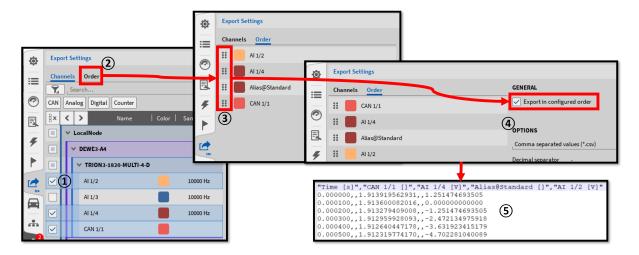


Fig. 11.2: Edit channel export order

11.1 Export active recorder region or between cursors

The user has the possibility to only export the active recorder region of the selected recorder or the region between the cursors. Depending on whether the cursors are activated, one of the following options to export (see Fig. 11.3) can be seen. This option is available for all file formats.

OPTIONS	OPTIONS
CSV	CSV
Decimal separator	Decimal separator
CSV delimiter	CSV delimiter
Separate header row for units	Separate header row for units
Use absolute timestamps	Use absolute timestamps
✓ Waveform ✓ Statistics	✓ Waveform ✓ Statistics
 Export active recorder region 	Export region between cursors
Export	Export

Fig. 11.3: Export active recorder region or between cursors

Note: These options are only available if the export menu is not enlarged and opened to full size. If the

menu is enlarged to full size or these options are deactivated the whole recorded data will be exported.

11.2 Export triggered data file with trigger aligned to zero

Export Settings						
Format Excel						
Export active recorder region						
CHANNELS						
🝸 , Search						
Bx < > Name Color						
Angle_CNT 1/2@[RemoteNode]						
Speed_CNT 1/2@[RemoteNode]						
TRION-2402-dACC-6-BNC						
Al 2/1@[RemoteNode]						
_111						
OPTIONS						
Separate header row for units	A	В	C D	A	В	С
Use absolute timestamps	1 Time [s]		teNode] [V]	1 Time [s]	AI 2/1@[Re	moteNo
	2 0 (2)	-6.09379	_	2 -2 (3)	-6.09379	
✓ Align to trigger 1	3 0.0001	-6.09303	_	3 -1.9999 4 -1.9998	-6.09303 -6.09348	
✓ Waveform	4 0.0002 5 0.0003	-6.09348 -6.09332		4 -1.9998 5 -1.9997	-6.09348	
V Havelolli				6 -1.9996	-6.09233	
Fill data gaps	6 0.0004	-6.09233				

Fig. 11.4: Align timestamps in exported file to zero

Timestamps in an exported data file with a triggered event can be aligned to the trigger (see (1) in Fig. 11.4). If align to trigger is not selected, then the 0s timestamp will be at recording start, not at the trigger (see (2) in Fig. 11.4). If align to trigger is selected, the timestamp at the trigger will then be set to zero. Thus, the time leading up to the trigger event (e.g. the pre-time) will be negative (see (3) in Fig. 11.4).

If more than one trigger event is in a recording, then the first trigger event will be set to zero, when the align to trigger option is selected.

This option is possible for *.txt, *.csv and *.xlsx-export.

11.3 Export with reduced sample rate

When exporting data, it is possible to reduce the sample rate of selected channels. To do this, enable the Reduced samplerate option in the export settings and choose a desired rate from the dropdown menu. Available rates range from 1 Hz to 10 kHz. This option is supported for the following export formats: .xlsx, .csv, and .txt.

Note: Reducing the sample rate will skip data points—it does not perform averaging or interpolation..

OPTIONS	
Comma separated values (*	.csv)
Decimal separator	A
CSV delimiter	A
Decimal precision 12	,
	1 Hz
Reduced samplerate	
Separate header row fo	2
Use absolute timestam	5
_	100
Align 0-time to trigger	1000
Waveform	10000

Fig. 11.5: Export channels with reduced sample rate

11.4 Export Options for a *.csv-file

If *.csv is selected as format, the user has the following additional options (see Fig. 11.6):

OPTIONS
Decimal separator _,
CSV delimiter _;
Decimal precision 12
Reduced samplerate
Separate header row for units
Use absolute timestamps
Align 0-time to trigger
✓ Waveform
Fill data gaps
✓ Statistics
AVG RMS
MIN MAX
Export

Fig. 11.6: Export Options for a *.csv-file

- Choose between Decimal separator " and "
- Choose between CSV delimiter ',' and ';'
- Select the decimal precision from 1 to 20 digits; the decimals will be rounded to the selected precision
- For reduced sample rate see *Export with reduced sample rate*.
- Selection of *Separate header row for units* will write the units in a separate row below the channel names
- Select Use absolute timestamps or export relative timestamps
- For Align 0-time to trigger see *Export triggered data file with trigger aligned to zero*.
- Waveform: select if the waveform data shall be exported.
- Fill data gaps: select if data gaps shall be filled up when exporting channels with different sample rates. For channels with a lower sample rate, the samples will be repeated until the next sample is available.
- Statistics: select which of the statistics parameters shall be exported

V

OXYGEN Online Help, Release 7.6

11.5 Export Options for a *.txt-file

If *.txt is selected as format, the user has the following additional options (see Fig. 11.7):

OPTIONS
Decimal separator
Decimal precision 12
Reduced samplerate
Separate header row for units
Use absolute timestamps
Align 0-time to trigger
Waveform
Fill data gaps
Statistics
AVG RMS
MIN MAX
Header fields
Events
Recording start/duration
Export channel list
Export

Fig. 11.7: Export Options for a *.txt-file

- Choose between Decimal separator " and "
- Select the decimal precision from 1 to 20 digits; the decimals will be rounded to the selected precision.
- For reduced sample rate see *Export with reduced sample rate*.
- Selection of *Separate header row for units* will write the units in a separate row below the channel names
- Select Use absolute timestamps or export relative timestamps
- For Align 0-time to trigger see Export triggered data file with trigger aligned to zero.
- Waveform: select if the waveform data shall be exported.

Fill data gaps: select if data gaps shall be filled up when exporting channels with different sample rates. For channels with a lower sample rate, the samples will be repeated until the next sample is available.

- Statistics: select which of the statistics parameters shall be exported
- Select if the Header fields shall be exported to the file
- Select if the Event List shall be exported to the file
- Select if the Recording start and the Recording duration shall be exported to the file
- Select if the Channel List shall be exported to the file

11.6 Export options for a *.mdf4-file

If *.mdf4 is selected as format, the user has the following additional options (see Fig. 11.8):

MDF4	
MDF4.1 (compressed)	MDF4.0
Export events Waveform Statistics	Header fields
Export active recorder rep	
Export	

Fig. 11.8: Export options for a *.mdf4-file

- Select if the data shall be exported to the compressed mdf4.1 or the uncompressed mdf4.0 format
- *Events* and *Header data* will be exported per default. The check boxes are only displayed for information purpose
- Select if Waveform data and/ or Statistics data shall be exported

11.7 Export options for a *.mat-file

If *.mat is selected as format, the user has the following additional options (see Fig. 11.9):

OPTIONS	
Matlab	
Compressed	Normal
 Export events 	✓ Header fields
✓ Waveform ✓	Statistics
 Export active rec 	order region
	Export

Fig. 11.9: Export options for a *.mat-file

- Choose between Compressed and Normal export
 - Compressed: The *.mat-file will be compressed during export. Thus, the Compressed export will take more time than the Normal export
 - Normal: The *.mat-file will not be compressed during export. Thus, the Normal export will be quicker than the Compressed export, but the resulting *.mat-file is larger
- The exported file format is a 7.3 MAT-file

- Events and Header data will be exported per default. The check boxes are only displayed for information purpose
- Select if Waveform data and/ or Statistics data shall be exported

11.8 Export options for an *.xlsx-file (Excel)

If Excel is selected as format, the user has the following additional options (see Fig. 11.10):

OPTIONS	
Separate header row for units	
Use absolute timestamps	
Header fields	
Reduced samplerate	Hz
Waveform	
✓ Fill data gaps	
Align 0-time to trigger (Scalar only)	
Statistics	
AVG RMS	
MIN MAX	
Split data sheets No split	
Export	

Fig. 11.10: Export options for an Excel-file

- Selection of *Separate header row for units* will write the units a separate row below the channel names
- Select Use absolute timestamps or export relative
- Select *Header fields* to export header data in a separate Excel spreadsheet.
- For reduced sample rate see *Export with reduced sample rate*.
- Waveform: select if the waveform data shall be exported.
 - Fill data gaps: select if data gaps shall be filled up when exporting channels with different sample rates. For channels with a lower sample rate, the samples will be repeated until the next sample is available.
 - Align 0-time to trigger: see *Export triggered data file with trigger aligned to zero*.
- With *Split data sheets*, select if a new spreadsheet should be created per file (for multi-file recordings) or per event (for triggered recordings). Otherwise, select no split.

Note: As the number of lines on one Excel spreadsheet is limited to 1048576 (2²⁰) the data will be written to a new spreadsheet if this limit is reached.

11.9 Export Options for a *.rsp (rpc III)-file

OPTIONS	
RPC III	4
Exp	ort

Fig. 11.11: Export options for a *.rsp-file

There are currently no options to select.

11.10 Export Options for a *.wav-file

OPTIONS			
WAV			A
Format	РСМ		
		Export	

Fig. 11.12: Export options for a *.wav-file

Selection of PCM or Float Format

- PCM: 16-bit integer format
- Float: 32-bit floating point format

The PCM format results in an export file, which is half the size of the float format file but is also less accurate.

11.11 Export Options for a *.dat-file (DIADEM)

OPTIONS		
Diadem .dat		
	Export	

Fig. 11.13: Export options for a *.dat-file

DIADEM-Export only supports the export of Waveform data but no support of Statistics (Reduced) data. The format only supports the export of scalar channels such as analog channels and formulas.

When exporting data, three separate fiels will be created:

- *.dat-file containing header information
- *.R32-file containing the data
- *.R64-file containing the timestamps

V

OXYGEN Online Help, Release 7.6

11.12 Export Options for a *.nt-file (DynaWorks)

OPTIONS		
DynaWorks .nt		
	Export	

Fig. 11.14: Export options for a *.nt-file

This export generates the DynaWorks Neutral File Format. This export only supports the export of Waveform data but no support of Statistics (Reduced) data.

Each channel is exported into a separate export file. Additional header are required for some databases.

Detailed information about this export format can be found in the DynaWorks export manual which is available on the DEWETRON CCC-portal (https://ccc.dewetron.com/).

11.13 Export Options for a *.h5-file

This export generates a file in HDF5 file format.

OPTIONS	
HDF5	
Compressed	
Export	

Fig. 11.15: Export options for a *.h5-file

Choose if the file should be exported in a compressed format. This export supports the export of Waveform data and includes metadata but does not support the export of Statistics (Reduced) data.

11.14 Export Options for a *.uff-file

This export generates a file in binary or ASCII universal file data set format 58.

OPTIONS		
UFF		-
File Format	Binary	
Channel Settings	Export all channels to one file	
	Export	

Fig. 11.16: Export options for a *.uff-file

This export only supports the export of Waveform data but no support of Statistics (Reduced) data and has the following export options:

- File Format: Choose between Binary and ASCII
- Channel Settings: Choose if all channels shall be exported into one common file or if each channel shall be exported into a separate file.

11.15 Export Options for a *.imc2-file

This export generates a file in *.imc2 file format.

OPTIONS	
IMC2	
NaN value1	
	Export

Fig. 11.17: Export options for a *.imc2-file

The options allow the definition of the NaN value in the exported file. This export only supports the export of Waveform data but no support of Statistics (Reduced) data.

11.16 Export Options for a *.tdms-file

This export generates a file in *.tdms file format for further use in NI LabVIEW.

OPTIONS	
TDMS	-
Use absolute timestamps for async data	
Export	

Fig. 11.18: Export options for a *.tdms-file

Choose if absolute timestamps should be used for asynchronous data by checking the box. This export only supports the export of Waveform data but no support of Statistics (Reduced) data.

V

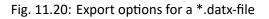
OXYGEN Online Help, Release 7.6

11.17 Export Options for a *.nc-file (NetCDF)

This export generates the Network Common Data Format (NetCDF).

OPTIONS
netCDF
NetCDF3
NetCDF4/HDF5
NetCDF5
Export
Batch export

Fig. 11.19: Export options for a *.nc-file


This export only supports the export of Waveform data but no support of Statistics (Reduced) data. The following versions of this format are available:

- NetCDF3
- NetCDF4
- NetCDF5

11.18 Export Options for a *.datx-file (DSPCon)

This export generates a file in *.datx format for use in software from DSPCon

OPTIONS	
DSPCon (.datx)	
Export	
Batch export	
AUTOMATIC EXPORT	
Export on measurement end	
Auto-export folder:	
, C:/DATA/	Browse

This export supports synchronous channels only. Asynchronous channels, like those of a power group, cannot be exported.

11.19 Batch export

OXYGEN's Batch export option provides the possibility to automatically export several *.dmd-files successively with the same export settings. To do so, open the first *.dmd-file that shall be exported and go to the Export menu.

Fig. 11.21: Export menu

Select the desired export format (including the individual options) and the channels to be exported (see (1) in Fig. 11.21). Press the Batch Export button next (see (2) in Fig. 11.21).

A popup window will open that allows the user to select other *.dmd-files whose data shall be exported with the same export settings that are selected for the first file (see Fig. 11.22). After selecting all desired files, press *Open*.

Select additional data files Data Folder	C:/ Users rludwig Desktop Neuer Ord	Iner	
> 📜 D:/DATA	x Name	Size	Date
System	2402_vs_1820ENOB_000.dmd	4.0 MB	2021-11-30 07:51
> 🛀 c/	2402_vs_1820ENOB_010.dmd	733.4 kB	2021-10-21 10:44
> 🧈 D:/	2402_vs_1820ENOB_009.dmd	865.5 kB	2021-10-21 10:43
> 🥪 E:/	2402_vs_1820ENOB_008.dmd	3.3 MB	2021-10-21 10:42
> 🥪 V:/	2402_vs_1820ENOB_007.dmd	505.0 kB	2021-10-21 10:42
> 🥪 Z:/	 2402_vs_1820ENOB_006.dmd 2402_vs_1820ENOB_005.dmd 	737.6 kB 865.3 kB	2021-10-21 09:56
	2402_vs_1820ENOB_004.dmd	3.3 MB	2021-10-21 09:54
	2402_vs_1820ENOB_003.dmd	504.9 kB	2021-10-21 09:50
	2402_vs_1820ENOB_002.dmd	733.2 kB	2021-10-21 09:47
	V 🖉 2402_vs_1820ENOB_001.dmd	865.5 kB	2021-10-21 09:46
	Delete		New folder
Browse		Cancel	Open

Fig. 11.22: Popup window to select additional *.dmd-files for export

The batch Export menu will open listing all selected *.dmd-files (see Fig. 11.23). The destination folder for the exported files can be specified.

Batch Export	
Destination	Start
	6/11
Cylliaes/Hudwig/Deaktop/Neuer Ondine/(2402_vs_3620_MUC)_SNR_ENDE_800.4md	06
c/Users/Varleig, Deaktop/Neuer Ordner/1482_vs_3605_MUDL_SNR_DNO8_555.dead	25
c)/Unrs/Nutwig.Ooktop/Neuer Ondrer/2402_vc_3620_MU21_SNR_ENO8_008.dexd	95
c/Users/Mudwig, Desktop/Neuer Ondree/2402_vs_3020_MUTI_SNR_ENO8_008.dexd	25
c)/bers/fudwig.Dektop/Neuer Ondrec/2402, vs_3620_MU21_SNR_ENO8_007.dmd	m
c)/Users/Nutwig.Deaktop/Neuer Ondine/19432_vs_34325_MU21_SNR_ENO16_308.dmd	0%
c/Users/Vadwig,Deaktop/Neuer Ordner/2402,vs_3028_MUD1,SNR_ENO8_085.dead	
c)/Users/Nutwig.Deaktop/Neuer Ondiner/2462, vs_3828,MU27,SNR_ENO8,364.dead	95
c/Users/Vadwig, Deklop/Neuer Ondree/2402_vs_3020_MU21_SNR_DNO8_803.dml	05
c/Users/Medwig.Deaktop/Neuer Ondexe/2462_vs_3658_MU27_SNR_ENOR_86Ldead	P5
c/Usery/fudwig/Deaktop/Neuer Ondine/2452_vs_3528_MU27_SNR_ENOR_352.dml	25
	Close

Fig. 11.23: Batch Export menu

Three additional options can be selected :

- Overwrite existing files
- Continue after error
- Export all channels

Press *Start* to initiate the batch export. The progress will be displayed while the export is running. The export file name will be equal to the *.dmd-filename.

Bathlopert	
Interior a College	
Concerts mining thes Contents after error Concerts distances	fiert .
	10/10
Criteronisting Destrop Neur Deliver Settler, vol. 467, 598, 5908, 5808, 58144	1074
CONVERSION DESCRIPTION OF MILLION, N., MILLION, 199, PORT, MILLION,	1000
citizes indeg the high face to be (ML et al. MC NOT, SM (NOT, MILAN	1075
crowscheing Stelling Neur Schw 245, n. 265, 937, 240, 000, 08, 444	1000
cities (solid production from the last on the Section 2001, no. 2001, 2007, 2001, 2014, 2014, 2014, 2014, 2014	1075
concluding desting hour destination, in, part, NAP, SHUTHAR, URLAND	1000
CONVERSING Building Price Science Sells, nr, 200, 9527, 549, 5508, 455, 464	10%
CONTINUES States New Sciences (197, n., 197, 507, 508, 508, 504, 504, 504, 504, 504, 504, 504, 504	100%
Charactering States Pace Science 245, nr, 355, 955, 349, 5401, 85, 85, 84	100%
Chercholog Sollag Neur Scherchill, n., 303, 957, 598, 5908, 81, 4nd	1075
criter cruding Debty Neur Debre 245, nr, 365, 957, 348, 0001, 85, 464	1075
	Cana

Fig. 11.24: Batch export window after export is finished

After the export is finished (see Fig. 11.24), the Batch Export window can be closed.

Note:

- In case only certain channels shall be exported the selected channel's names must be the same in all *.dmd-files. Alternatively. It is possible to export all channels from the selected files.
- All *.dmd-files that are selected for the batch export must be in the same folder.
- Each *.dmd-file is exported into one separate file.
- Data is always exported from measurement start to measurement end. Active recorder/cursor regions will be ignored.
- Errors occurring during the export could be the following:
 - Channel not found: A channel that is selected for export is not included in one of the *.dmd-files
 - File not accessible: A *.dmd-file is open in another OXYGEN Viewer
 - Export file already exists
- The batch export will stop in case an error occurs but it is possible to continue with the export in case the option *Continue* after error is selected.
- The file for which an error occurs will be skipped during the batch export.

11.20 Automatic Data Export After Measurement End

OXYGEN offers the possibility to export the data automatically after the measurement is finished in one of the above specified file formats including their above specified export options.

To activate the automatic export function, proceed the following steps:

• Open the Export menu and enlarge it to the full screen (see Fig. 11.25):

\$					Export Settings
	CHAN	NEL	.s		OPTIONS 2
	All			Search	Excel
0	×	<	>	1 Name Color	Separate header row for units
E.		~	Local	Node	Use absolute timestamps
Ŧ		Ŀ	V DE	WE2-A4	V Waveform V Statistics
			∨ т	RION-VGPS-20-V3	Export
Þ				DI 1/1 Sim	
				DI 1/2 Sim	AUTOMATIC EXPORT 3
				DI 1/3 Sim	Export on measurement end Auto-export folder:
				DI 1/4 Sim	duto-export folder: d/DATA/Browse
				DI 1/5 Sim	
i				DI 1/6 Sim	
				DI 1/7 Sim	
				DI 1/8 Sim	
			\checkmark	CNT 1/1 Sim	
				Angle_CNT 1/1 Sim	
				Speed_CNT 1/1 Sim	
			>	{GPS 1/1 Sim}	
			∨ T	RION-CAN-4	
				CAN 2/1 Sim	
				CAN 2/2 Sim	
				CAN 2/3 Sim	
				CAN 2/4 Sim	

Fig. 11.25: Export menu, Auto-export settings

- Select either all or individual channels that shall be exported automatically after the measurement is finished (see (1) in Fig. 11.25) by checking the certain checkboxes on the left-hand side
- Select the desired file format and its individual export options (see 2 in Fig. 11.25).
- Check the checkbox *Export on measurement end* (see ③ in Fig. 11.25)
- Specify the desired directory the export files shall be stored to (see (4) in Fig. 11.25)

For details about the other export options, refer to

- Export Options for a *.csv-file
- Export Options for a *.txt-file
- Export options for a *.mdf4-file
- Export options for a *.mat-file
- Export options for an *.xlsx-file (Excel)
- Export Options for a *.rsp (rpc III)-file
- Export Options for a *.wav-file

- Export Options for a *.dat-file (DIADEM)
- Export Options for a *.nt-file (DynaWorks)
- Export Options for a *.h5-file
- Export Options for a *.uff-file
- Export Options for a *.imc2-file
- Export Options for a *.tdms-file
- Export Options for a *.nc-file (NetCDF)

CHAPTER

DATA NAVIGATION

12.1 Opening multiple data files

It is possible to open multiple *.dmd data files and to review them.

In order to open several files, there are two options. Click on the folder icon in the Action bar (see Fig. 12.2) and select the files to be opened or open the full menu of the *Measurement Settings > Analysis Files* and click on *Add file...* (see Fig. 12.1) and select all files to be opened and reviewed.

۵۰۵	nsaved - CXYGEN			-	o x
۲	Measurement Settings	Analysis Files			
	Analysis Files	Align mode Manual align			
Q.	File History	Identifier_m_20211206_142031_DEWE3-RM16_046	, x		
0	Settings	Filename: m_20211206_142001_DEINE3-RM16_046.dmd			
	Multi-file	Recording time: 2021-12-06 21:20:31.794 (UTC+6) 120 channels imported	000 8 00:00:12:510		
4	Header Data				
۲	Nodes	Offset_0	,		
1	Sync Setup	Mertifier _ m_20211206_142031_DEWE3-RM16_047	, х		
	Security	Filename: m_20211206_142001_DEWE3-RM16_047.dmd	©		
ф	Configuration Lock	Recording time: 2021-12-06 21:20:31.794 (UTC+6) 120 channels imported	000 d 00:00:12.530		
	Reset to defaults	Offset_0			
۹	Jump to system options	Mentifier_m_20221206_542031_DEWE3-RM16_063	X		
		Filename: m_20211206_142001_DEWE3-RM16_053.dmd	0		
		Recording time: 2021-12-06 21:20:30.794 (UTC+6)	000 d 00:00:12.530		
		120 channels imported			
		олыцо			
		Identifier _ m_20211206_142031_DEWE3-RM16_054	, x		
		Filename: m_20211206_142001_DEWE3-RM16_054.dmd	0		
		Recording Smet: 2023-12-06 21:20:31.794 (UTC+6)	000 d 00:00:12.530		
		120 channels imported			
		Offset_0			
		Merl/Mer _ m_20211206_342031_DEWE3-RM16_055	X		
		Filmame: m_20211206_142031_DEWE3-RM16_055.dmd	0		
		Recording time: 2023-12-06 21:20:31.794 (UTC+6)	000 d 00:00:12.530		
		186 channels imported			
		Add file			X

Fig. 12.1: Opening multiple data files in the Measurement Settings menu

					_	
Screen		2 888 AND 1997 1997 1997 1997 1997 1997 1997 199				۲
		TRANK II PROFESSION OF CONTRACTOR OF CONTRAC	out the sum	0 01 0000 00000 01	1.0	=
1000	Open Data File					-
- °	Data Fulder	D/ DATA Flis_short				0
	> 🧎 0/0474	Norte	Sjæ i	Date		毘.
1111	System	Market Ma Market Market Ma Market Market	33.3 MB	2003-12-0K 20:20		4
112	> 📢 Cl	A m. 2022208, 142002, DEWE3-RING, 204, dev. dev. dev. dev. dev. dev. dev. dev.	33.3 MB	2025-12-04 2025		6
	> 🚚 =/	A m. 2022206, 34000, DEWES-RINS, 256.dmd	36.5 MB	2015-12-06 21:20		
	2 40 17	A m. 2011206, 14000, DEME3-8066, 857, dmd	36.5 MB	2023-12-06 21:20		10
	> 001	A m. 2021206, 24200, DEME34806, 882.4md	363.988	2023-12-012124		
	> 🔊 V/	C A m_MILLION_PERMIT HALAND	363.988	2023-12-06 22:20		4
	> === 2/	C 🛆 m_HELION_HOULDEWEI-HOL_HECHMAN	36.9 MB	2015-12-06 22:20		
		C 🛆 m_3001206_16000_0FWE34866_8564md	40.2 MB	2025-12-0K 25:20		
		C A m_3001206_36006_0FWE34806_0HLdmd	45.1.148	2023-12-0K 20:20		-
		C 🛆 m, 2022206, 24000, DEMESHINGS, MI dired	45.1 MB	2013-12-06 22:25		
		🖸 🛆 m. 3021206, 34000, productmanagement.dend	385.4148	2015-12-06 10:20		
		side_		New folder		
		Outwels Realers				
		Cercle Venior: 572			39	
		Recording Start: 2025-02-00 2220251 - Asia; Shanghai VTC-020			35	
		Develor: 000 d 000022300 Mex. Sampler and 0000 Hz		\mathbf{i}	mV	
		Mallegart No		\		
				\		
				\		
+ 13						
	Browne		Cancel	Open		
5	8					
-	NAMES OF TAXABLE					
- Ce 🐨	nem R L	. [0] () [1] () [1] (10] (10] (10] (10] (10] (10] (10] (1	9 6 6			<u> </u>

Fig. 12.2: Opening multiple data files

An identifier can be given to the single files, in order to better differentiate between them when analyzing and reviewing them. The original file name will not be changed.

Single files can be removed again, by clicking on the X. By clicking on the circled i, more information can be displayed for each file.

It is possible to align the files on their time axis, to align them to the recording start or to specific events.

- Manual align: enter an offset in seconds for the files in order to align them to a specific event.
- Align to recording start: in case the files were recorded during different periods of time, it is possible to align all files to their recording start.
- Align to absolute time: in case absolute time was used for the recordings, the files can be aligned to the absolute time.

All these options are also available in the small measurement settings menu.

The single files with all the channels are available in the Channel List and shown as individual sections.

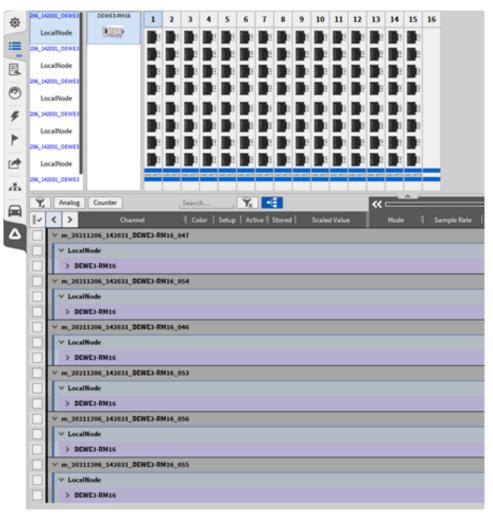


Fig. 12.3: Multiple data files shown as individual sections in the Channel List

All channels from each file can be used for offline math and visualized on the measurement screen. A new data file can be stored, including all channels from each file (see (3) in Fig. 3.5).

12.2 Batch processing

Changes, which were done in a measurement file during analysis and post-processing can also be applied to other measurement files. This can be very useful when having measurement series or campaigns, where changes can then be applied to all files. The same setup must have been used for all files and all files must include the same recorded channels, to apply the changes. Following changes will be applied:

- Offline math (formulas, power groups, etc.)
- Offline changes in the channel list (CAN channels, etc.)
- Changes to the measurement screen (instruments)

To do so, simply open one measurement file. After doing the analysis and post-processing save the file, open the full menu of the Measurement Settings and go to File History (see Fig. 12.4). By clicking on the Button Apply changes to other measurement files... the files can be selected from the dialogue which will open (see Fig. 12.5). Files within the same folder can be selected.

Measurement Settings	File History
Analysis Files	MEASUREMENT FILE CHANGES
File History	Apply changes to other measurement files
Settings	ROLLBACK FILE CHANCES You can revert to a previous version of the file by clicking the corresponding button.
Multi-file	Original Rev. 2
Header Data	
Nodes	
Sync Setup	
Security	
Configuration Lock	
Reset to defaults	
Jump to system options	

Fig. 12.4: Applying offline changes from one measurement file to others

Measurement Settings	File History				
	MEASUREMENT FILE CHANGES				
	Apply chang	m to other measurement files			
File Halory	ROLLBACK FILE CHANCES				
Settings					
Multi-file	Original	Bes 2			
Header Data		Select Data Files			
Nodes		Cuta Folder	C/ DATA Data ONSEN		
Sync Setup		> 📜 c(0404,0xta	Ex Name	Star	
		System	Kenne K	528 K.3 M3	Cute 2021-12-10 12-21
Security		> 📢 CI		95.3 MB	2021-12-10 12:21
Configuration Lock		> ~ W		44,0 MB 53,5 MB	2021-12-10 12:04
		>2/			
Reset to defaults		1 × 11	Measurement, 30-13-21_011.dmd	43.5 MB	2021-12-10 12:04
Jump to system options			Measurement_30-13-21_000.dmd	58.4 MB	2021-12-10 12:04
			Measurement_30-12-21_009.dmd	46.5 MB	2021-12-10 12:04
			Measurement, 30-13-21_006.dmd	46.5 MB	2021-12-30 12:04
			A Measurement_30-12-21_007.dmd	51.1 MB	2021-12-30 12:04
			A Measurement_30-13-21_006.dmd	45.9 MB	2021-12-30 12:04
			A Measurement_10-12-21_005.dmd	55.8 MB	2021-12-30 12:04
			A Measurement_10-13-21_004.dmd	61.3 MB	2021-12-30 12:04
			C 🖉 🛆 Measurement_10-13-21_003.dmd	53.4 MB	2021-12-30 12:04
			C A Measurement_10-13-21_002.dmd	61.1 MB	2021-12-30 12:04
			C 🖉 🛆 Measurement_10-13-21_00Ldmd	56.6 MB	2021-12-30 12:08
			Delete		New folde

Fig. 12.5: Selecting the files for the batch processing

After selecting the files, click Open and a new dialogue will open (see Fig. 12.6). To apply all changes press Start. Fig. 12.6 shows the dialogue after the processing is done to all files successfully.

s all changes (offline math, instrument screens) made to the currently opened	d measurement file to the selected files. Start 0/13	
c)/DATA/Data/001/6EN/Measurement_10-12-21_013.dmd	05	
c/DATA/Data/0XYGEN/Measurement_10-12-21_012.dmd	0%	
c/DATA/Data/0005EN/Measurement_30-12-21_051.dmd	0%	
c;/DATA/Data/OXYGEN(Measurement_10-12-21_010.dmd	0%	
c/DATA/Data/CXYGEN/Measurement_10-12-21_009.dmd	0%	
c;/DATA/Data/OXYGEN/Measurement_10-12-21_008.dmd	Batch Setup	
c/DATA/Data/OXYGEN(Measurement_10-12-21_007.dmd	Applies all changes (offline math, instrument screens) made to the currently opened measurement file to the selected files.	Start
c/DATA/Data/03395EN/Heasurement_10-12-21_006.dmd		3
cr/DATA/Data/OXYGEN/Measurement_10-12-21_005.dmd	c/DATA/Data/DXYGEN/Measurement, 10-12-21, 003.dmd	,
c/DATA/Data/0XYGEN/Measurement_10-12-21_004.dmd	c/DATA/Data/0XYGEN/Measurement_10-12-21_02.dmd	
c/DATA/Data/OXYGEN/Measurement_10-12-21_003.dmd	c:/DATA/Data/OXYGEN/Measurement_10-12-21_001.dmd	1
c/DATA/Data/OXYGEN/Measurement_10-12-21_002.dmd	c:/DATA/Data/OXYGEN/Measurement_10-12-21_000.dmd	1
c/DATA/Data/CXVGEN/Measurement_10-12-21_001.dmd	c:/DATA/Data/OXYGEN/Measurement_10-12-21_009.dmd	1
	c:/DATA/Data/DXYGEN/Measurement_10-12-21_008.dmd	1
	c/DATA/Gata/OXYGEN/Measurement_10-12-21_007.dmd	1
	c:/DATA/Data/OXYGEN/Measurement_10-12-21_006.dmd	1
	c/DATA/Data/DXYGEN/Measurement_10-12-21_005.dmd	;
	c/DATA/Data/OXYGEN/Measurement_10-12-21_004.dmd	1
	c/DATA/Oata/OXYGEN/Measurement_10-12-21_003.dmd	1
	c:/DATA/Gata/OXYGEN(Measurement_10-12-21_002.dmd	1
	c/DATA/Owta/OXYGEN/Measurement_10-12-21_00Ldmd	1

Fig. 12.6: Batch processing before start and after it finished successfully

The dialogue will also show any errors, in case the processing cannot be fulfilled. These files will be ignored, in case the processing is started anyway.

Possible reasons for this could be:

- File not accessible and cannot be opened, because it might be already open.
- Channels are not the same for each file. This file might not be recorded with the same *.dms setup such as the other files.
- Duplicate channel names in the setup.

\$	Measurement Settings			ile History					
	Analysis Files	Batch Se		es (offline math, instrument scree	s) made to the currently opened	ed measurement file to the sele	wheel files.	Star	•
0	File History Settings								0/0
	Multi-file	<u> </u>	c:/DA	/m_20240110_090912.dmd			Could	not open file.	0%
۶	Header Data		-	/m_20240110_090909.dmd			Channels d	o not match.	0%
	Nodes Sync Setup		c:/DA	/m_20240110_090906.dmd			Channels d	o not match.	0%
	Security								

Fig. 12.7: Error message shown for the batch processing

To return to your original file or later revision, click on the corresponding button under Rollback file change seen in Fig. 12.4. The changes made to the file will be deleted.

12.3 Deleting channels in recorded files

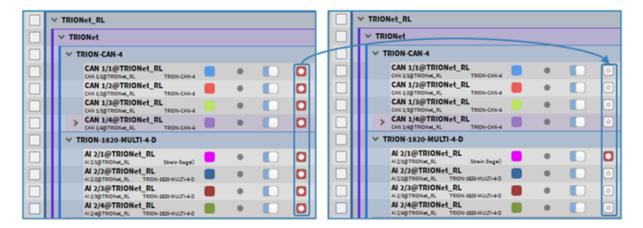


Fig. 12.8: Disabling the stored flag

Removing channels from recorded *.dmd files can be desirable to reduce file size and for a concise channel list overview. To do this, disable the stored flag in the channel list (see Fig. 12.8). Subsequently, saving the *.dmd file as a new file (see *Measurement settings* and Fig. 5.2 for more information) will delete the channel from the channel list in the new file and the stored data of the channel will be removed from the file, thus reducing the file size.

CHAPTER

THIRTEEN

SCREENS MENU

13.1 Screens overview

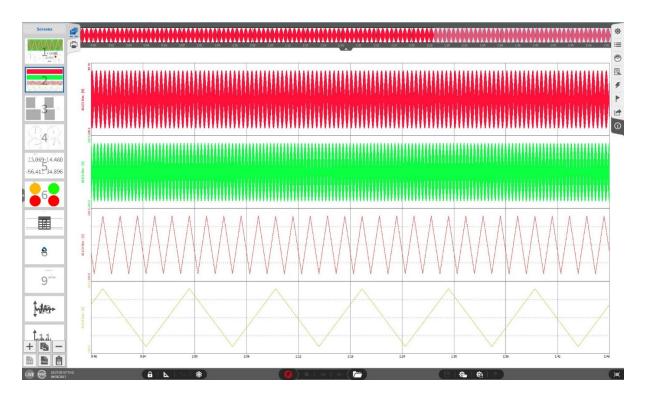


Fig. 13.1: Screens Menu - Overview

In the *Screens* menu, the user can organize its measurement screens. By a single click on the icon, a small overview about all created measurement screens will appear like it is shown in Fig. 13.1. The user can add and delete measurement screens by clicking on the + and - signs on the lower end of the *Screens* menu.

To change the currently displayed measurement screen, just click on the desired one in the overview. It is possible to change the order of several measurement screens by selecting the respective screen and keeping the mouse button pressed for 2 seconds. After two seconds, the blue frame will become bold. Now it is possible to change the order of the selected screens to any desired position by keeping the mouse button pressed and moving the screen.

If several monitors are used, it is possible to undock a screen and move it on another monitor. Therefore, the user must select the desired screen and keep the mouse button pressed for 2 seconds again. When the blue bold frame appears, the user can move the screen to another monitor and release it there.

The *yellow cursor* which is displayed in the Overview bar and the Recorders is linked to all instruments on any screen. I.e. If the yellow cursor is moved in a Recorder on screen 1, the value displayed in a Digital Meter on screen 3 will update according to the actual position of the yellow cursor position.

Additionally, measurement screens can be saved as a template to be reloaded later or transferred to other devices. This can be done via the "TPL" button left below the "+" button. The templates are saving the arrangement and configuration of the active screen at C:\Users\Public\Documents\Dewetron\Oxygen\Templates, from where they can be copied and transferred to other devices. To load a template, the magic wand button right to the "+" button must be used. In case an order analysis or power group was created in the channel menu, by default, a template for an order analysis/power group screen can be found also where other saved templates are located. More information can be found in the order analysis and power group manual.

Note: The system performance may slow down while the Screens menu is partially open.

The buttons on the lower end of the Screens Menu (see Fig. 13.2) have the following functionalities:

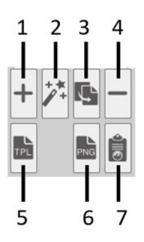


Fig. 13.2: Pushbuttons in the Screens Menu

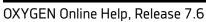
No.	Function	Description				
1	Add Screen	Add an empty measurement screen beyond the last screen				
2	Load Screen	Previously saved configurations of measuring instruments can be loaded.				
3	Copy Screen	Copy selected screen beyond the last screen				
4	Delete Screen	Delete selected screen				
5	Save measure- ment screen setup	The current arrangement and configuration of the measurement setup is saved as a template.				
6	Export selected screen	Export selected screen as *.png or *.jpg-file				
7	Copy to Clip- board	If no Instrument is selected, the actual screen will be copied to clipboard. If an Instrument is selected, only the selected Instrument will be copied to clipboard				

13.2 Saving the screen as video

When enlarging the *Screens* menu to the whole screen, the functionality *Save Screen as Video* is available in *PLAY* mode (see Fig. 13.3). When being in LIVE or REC mode, this functionality is grayed out.

To do so, click on the *Screens* menu bar and move it to the right side while keeping the mouse button pressed or double click on the *Screens* menu.

Fig. 13.3: Measurement screens enlarged to the whole screen


Fig. 13.4 shows a close-up of the available settings:

- Selected Screen: Select a screen, which you want to use to make a video of.
- Time Settings:
 - Choose if you want to make a video of the entire measurement or only the region of the selected recorder of this screen.

Note: A recorder must be selected for this option to be available.

- The playback speed can be adjusted within a range of 0.1-100%, whereas 100% is the normal speed of the recording.
- Select a time label: none, relative or absolute time.
- Video Settings:
 - Select a video resolution (640x480, 1280x720, 1920x1080).
 - Select the video frames in fps (frames per second) within a range of 10-100.
- Options:

The measurement background can be selected to have a light or dark color scheme.

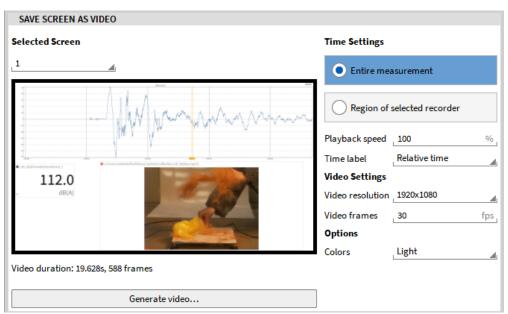


Fig. 13.4: Menu for the Save Screen as Video functionality

By clicking on *Generate video*, a name and location folder for the video can be defined. The video will be saved as *.mkv format.

CHAPTER

FOURTEEN

REPORTING TOOL

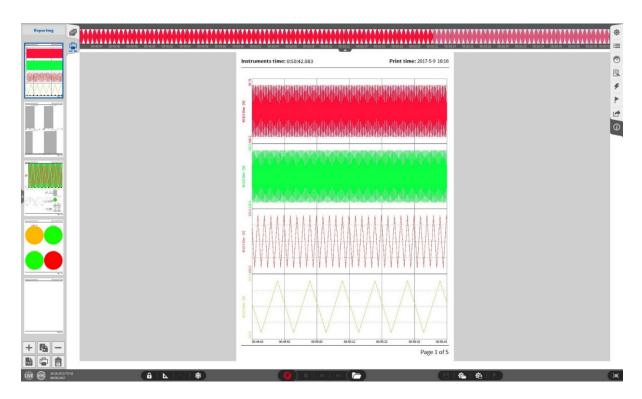


Fig. 14.1: Reporting Tool – Overview

A powerful feature of OXYGEN is the *Reporting* tool. This tool offers the user the possibilities to create reporting pages directly from the measurement screen. This feature can be used in the *REC* mode as well as in the *PLAY* mode and in the *LIVE* mode.

This tool and its functionalities will be explained in the following sections.

14.1 Creating a Report

To create a report, the user can either

- Copy a complete measurement screen to the report with the following steps
- Select the desired measurement screen within the screens menu and display it (see Fig. 14.2)

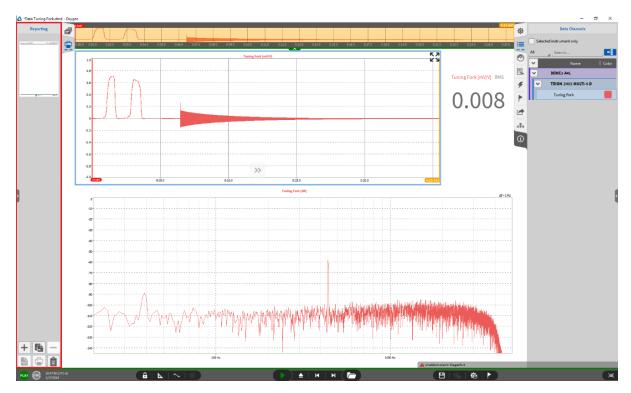
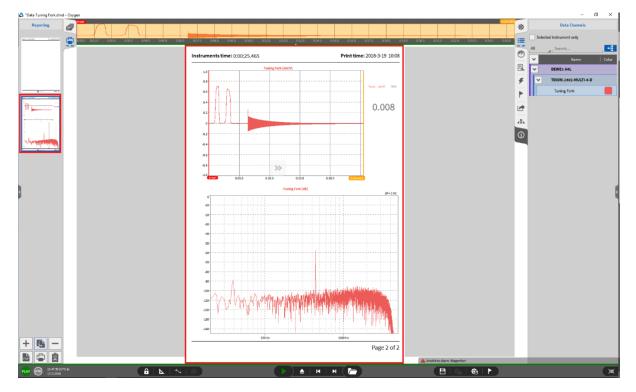



Fig. 14.2: Display the measurement screen that shall be copied to the report



• Open the small-view of the Report menu (see Fig. 14.3):

- Fig. 14.3: Open the small-view of the Reporting menu
- Click the copy button at the lower end of the Reporting menu (see Fig. 14.4 or 2 in Fig. 14.10)

Fig. 14.4: Click the Copy button

• The entire measurement screen is now copied to the report as a new report page (see Fig. 14.5):

Fig. 14.5: Measurement screen added to the report

• Select and copy single instruments from the measurement screen via **CTRL+C** (see Fig. 14.6) and paste it to the report page via **CTRL+V** (see Fig. 14.7).

Fig. 14.6: Copying single instruments from the measurement screen...

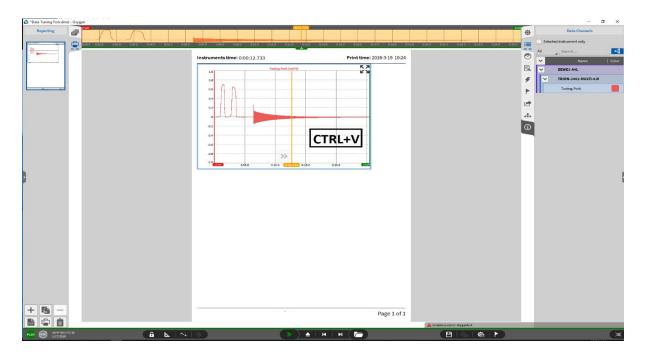


Fig. 14.7: ... to the report page

• Activate the *Design Mode* and edit the report page like a measurement screen (see *Adding Instruments to the measurement screen*)

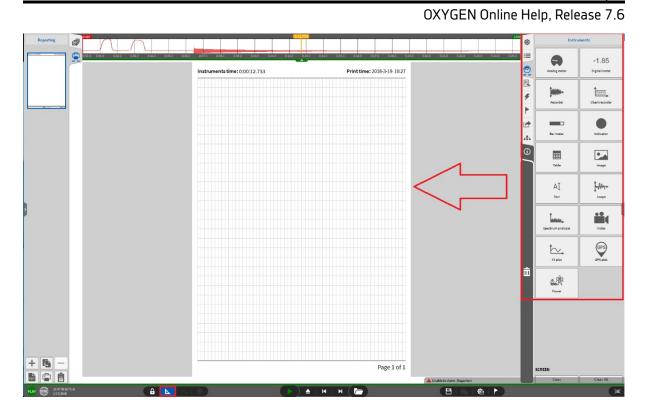


Fig. 14.8: Activating the Design Mode on report page

14.2 Reporting cursor

The *yellow cursor* is available on the reporting pages as well. On the measurement screens, the yellow cursor is linked to the instruments on all screens. This is different on report pages. Here, the yellow cursor is only linked to the instruments on the same report page and can therefore be placed on several positions of the data file on different pages:

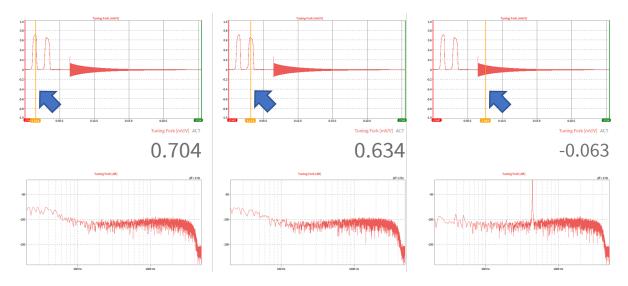


Fig. 14.9: Several yellow cursor positions within one report

14.3 Menu description

• The buttons on the lower end of the *Reporting* Menu (see Fig. 14.10) have the following functionalities:

Fig. 14.10: Push buttons in the Reporting Menu

Table 14.1:	Functionality	of the	push	buttons	in	the	Reporting
menu							

No.	Func- tion	Description
1	Add Page	Add an empty page beyond the last page
2	Сору	If a measurement screen is open (see Fig. 14.3), the screen will be copied to the report as a new page. If a report page is open (see Fig. 14.5), the selected page will be copied beyond the last page
3	Delete Page	Delete selected page
4	Save as *.pdf	Saves the report as *.pdf-file; for export options, enlarge the <i>Reporting</i> menu to the full screen
5	Send to printer	Send the report to a printer; to select a printer, enlarge the <i>Reporting</i> menu to the full screen
6	Copy to Clip- board	If no Instrument is selected, the actual page will be copied to clipboard. If an Instru- ment is selected, only the selected Instrument will be copied to clipboard

Reporting			
PAGE SETTIN	GS		\sim
Orientation:	Portrait		(1)
Paper size:	A4		2
Text size:	Large	4	3
Footer icon:			e
Select a foot	er image here	(4)	Browse
REPORT CON	TENT: 2 PAGES		
Pages:	• All		~
	O Specified pages:		5
	1, 3-5, 9		
PRINT REPOR	श	0	
PDF Architect	t 6	6	
	Print		\overline{O}
			0
CREATE PDF	REPORT		
d:/EXPORT/R	leport	(8)	Browse
	Save		9

Fig. 14.11: Expanded Reporting Menu

Table 14.2: Expanded Reporting Menu - Functionality

No.	Function	Description		
1	Paper Orientation	Selection of Paper Orientation Portrait or Landscape		
2	Paper size	Selection of Paper size A4, A5, A6 or Letter		
3	Text size Selection of reporting text size small, medium or large			
4	Footer icon	Browse for an icon that will be added to the footer		
5	Report Content menu	Specify if the whole report or only certain pages shall be printed		
6	Selected Printer	Browse for a Printer		
7	Print button	Sends the report to a printer		
8	PDF-file	Browse for a folder and specify the filename		
9	Save button	Saves the Report as *.pdf-file		

Note: It is possible to change the order of the pages by the same procedure as it was explained for the measurement screens: Select the respective page and keep the mouse button pressed for 2 seconds. After 2 seconds, the blue frame will become bold. Now it is possible to change the order of the selected

page to any desired position by keeping the mouse button pressed and move the screen.

CHAPTER

OXYGEN-NET

Note: This is an optional feature and requires a license.

OXYGEN-NET enables the combination of multiple DEWE3 systems within the same Ethernet network into a single high-channel-count measurement system. These systems can be synchronized and controlled using one or more *Master* units.

Each system in an OXYGEN-NET setup must have a unique hostname. For example, if you are using multiple DEWE3-A4 systems, name them DEWE3-A4-1, DEWE3-A4-2, and so on. The hostnames can be changed in the Windows settings (see Fig. 15.1) under *Control panel* \rightarrow *All Control Panel Items* \rightarrow *System* \rightarrow *Computer name*.

<u> </u>	System		- 0	×
\leftarrow	→ 🖂 🛧 🗾 > Control Panel	> All Control Panel Items >	System 🗸 🖉 Search Control Panel	Q
	Control Panel Home	LTSB © 2016 Microsoft Corporat All rights reserved.	ion. Windows 10) ^
•	Device Manager			
•	Remote settings	System		
•	System protection	Manufacturer:	DEWETRON	
•	Advanced system settings	Processor:	Intel(R) Core(TM) i7-6820EQ CPU @ 2.80GHz 2.81 GHz	
		Installed memory (RAM):	16,0 GB	
		System type:	64-bit Operating System, x64-based processor	
		Pen and Touch:	No Pen or Touch Input is available for this Display	
		DEWETRON support		_
		Phone number:	+43 316 3070 555	
		Support hours:	8 am to 5 pm (Mon-Thu) 8am to 3 pm (Fri) (CET/CEST)	
		Website:	Online support	
		Computer name, domain, and	workgroup settings	_
		Computer name:	DEWE2-A4-1 Change settings	;
	See also	Full computer name:	DEWE2-A4-1	
	Security and Maintenance	Computer description:	B0130048	
		Workgroup:	DEWETRON	~

Fig. 15.1: Changing the hostname

Terminology

This glossary defines key terms used in this chapter:

- Acquisition master: The superordinate master responsible for coordinating the synchronized acquisition start across all nodes.
- Master unit: A device that claims and controls slave units. It queries data from Slave units. Multiple devices can act as Master units in an OXYGEN-NET system, but a Master unit cannot simultaneously function as a slave unit.
- Master group: A group of Master units that share the same recording ID.
- Measurement unit: A DEWETRON device that can perform measurements and be integrated into an OXYGEN-NET system.
- Multi-Master system: An OXYGEN-NET system where one or more Slave units are claimed by multiple (>1) Master units.
- Recording group: A group of devices that share the same recording group ID and follow the same recording commands.
- Single-master system: An OXYGEN-NET system where one or more Slave units are claimed by a single Master unit.
- Slave unit: A DEWETRON measurement device claimed and controlled by a Master unit. It sends data to the Master unit. Several devices can be configured as Slave units in an OXYGEN-NET system.
- Synchronization master: A device that serves as the source clock for the synchronization signal in an OXYGEN-NET system.

15.1 OXYGEN-NET topologies

Every OXYGEN-NET system consists of at least one Slave unit and one Master unit, but can also include multiple Slave units and multiple Master units. Both a Slave and a Master can either be a measurement device (e.g. any DEWE3 device) or a standalone PC. This flexibility allows for various system topologies. In general, an OXYGEN-NET system topology consists of two main components: a network topology for data transfer and system control and a synchronization topology for signal synchronization. In case only a single measurement device is used no synchronization network is required, and only a network topology exists. However, when multiple measurement devices are involved, both a network and synchronization topology are required.

This chapter provides examples of various OXYGEN-NET topologies, separating **network** and **synchronization** topologies for better clarity and understanding.

15.1.1 Network topologies

The following examples show different possibilities for network topologies supported by OYXGEN-NET, including both Single-Master and Multi-Master systems. Although Master units are depicted as external PCs in the following illustrations, keep in mind that DEWETRON devices may also be used as Master units.

Single-master system

Fig. 15.2 illustrates a topology where one external PC serves as the Master unit, and three Measurement Nodes function as Slave units.

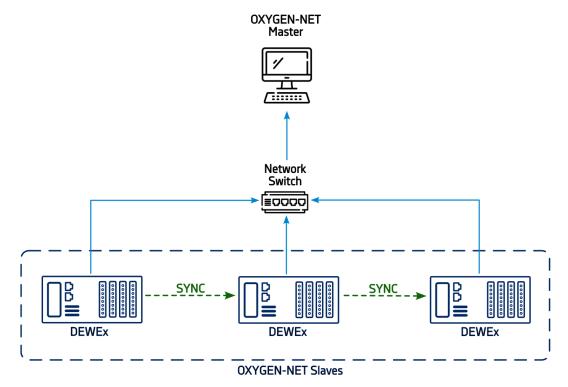


Fig. 15.2: Network topology with a single Master unit and three Slave units

Multi-Master System

Fig. 15.3 displays a topology where multiple external PCs serve as Master units and three Measurement Nodes acting as Slave units. All Units share the same ethernet network.

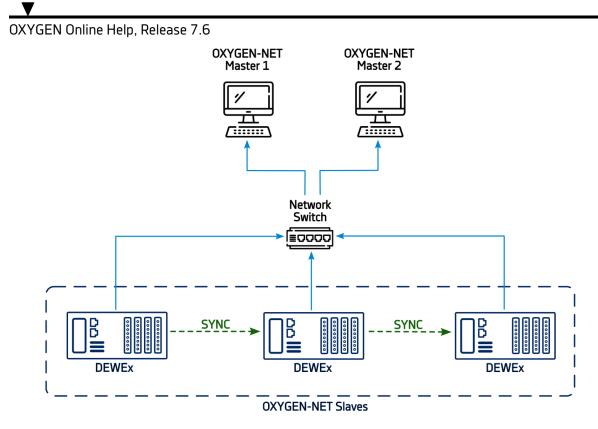


Fig. 15.3: Network topology with multiple Master and multiple Slave units.

Since DEWE3 devices are equipped with at least two Ethernet ports, a dual-LAN network can be implemented. Fig. 15.4 demonstrates an example setup with two Master units and three Slave units, where each Master has its own independent network.

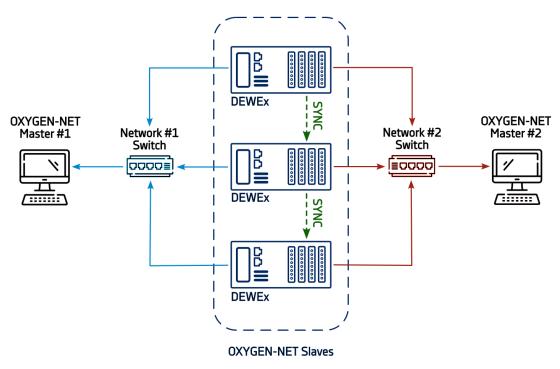


Fig. 15.4: Multi-Master system based on two different networks

Note: The illustrated network switches are optional. In case the Master unit supports enough ports

for all Slave units no switch is required.

15.1.2 Synchronization topologies

All DEWETRON devices feature an internal Enclosure Sync, which can be transmitted via the TRION-SYNC-BUS. Additional DEWETRON provides multiple hardware options for signal synchronization across multiple systems, including the DEWE3 Chassis Controller, TRION-BASE module, TRION-TIMING module, and TRION-VGPS module. These hardware options enable the usage of further time codes such as IRIG, GPS, and others.

The following figures illustrate supported synchronization topologies. The primary difference between these topologies is how measurement nodes are synchronized and whether they are connected to an external synchronization source.

Internal TRION-SYNC

Fig. 15.5 shows a synchronization topology using the TRION-SYNC-BUS, based on the internal Enclosure Sync signal of any DEWE3 device. This is the default synchronization method for all DEWE3 devices within an OXYGEN-NET. The system operates in a free-running mode without an external synchronization source, with all nodes connected via TRION-SYNC-BUS. This option is recommended when absolute timestamping is not required and no synchronization with third-party systems is needed.

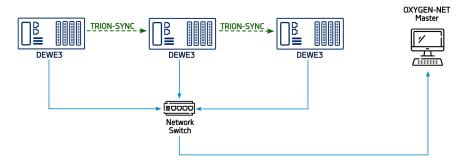


Fig. 15.5: Synchronization topology using the left DEWE3 device as the synchronization source, with the signal distributed via TRION-SYNC-BUS

External SYNC signal

This synchronization topology relies on an external third-party system as a reference clock, distributing the synchronization signal to each measurement node individually. It is recommended for widely distributed systems, where distances exceed the limits of the TRION-SYNC-BUS, or when a wired connection is impractical.

Since the TRION-SYNC-BUS is not used in this setup, each measurement node must be equipped with the appropriate hardware to receive the external synchronization signal. Fig. 15.6 illustrates a potential application of this topology.

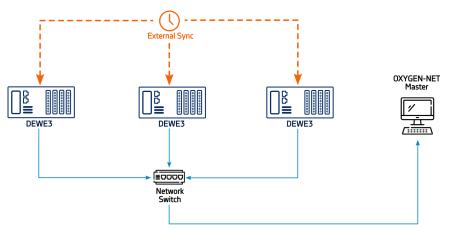


Fig. 15.6: Synchronization topology where each measurement node receives an external synchronization signal individually

Mixed external SYNC signal distributed via TRION-SYNC

This synchronization topology combines both internal TRION-SYNC and external SYNC signal methods. In this setup, an external synchronization signal is received by one DEWE3 device. Based on the received signals timebase a synchronization signal is distributed to all other DEWE3 devices via the TRION-SYNC-BUS.

The enclosure that receives the external sync signal automatically becomes the Synchronization Master and must be equipped with the appropriate hardware. This topology is ideal when synchronization to an absolute timestamp is required.

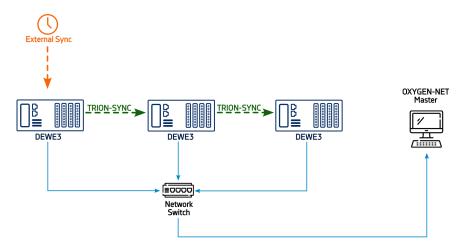


Fig. 15.7: Mixed synchronization topology, where an external sync signal is received by one DEWE3 device and distributed to other devices via TRION-SYNC-BUS

15.1.3 OXYGEN-NET topology including TRIONet3

The TRIONet3 is a front-end device, therefore it does not create an OXYGEN-NET network when connected to another device. Integrating it into an existing OXYGEN-NET system does not alter the network topology. Instead, the TRIONet3 functions as an extension of the connected device, with both acting as a unified measurement node. However, the TRIONet3 still requires both a network and a synchronization connection. Fig. 15.8 illustrates two example topologies incorporating TRIONet3 devices.

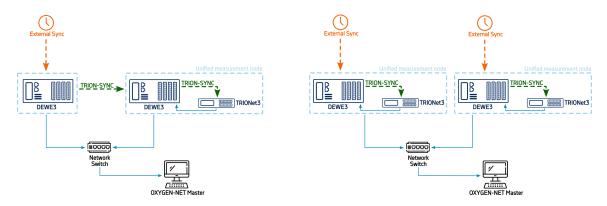


Fig. 15.8: OXYGEN-NET topology examples including TRIONet3s

15.2 OXYGEN-NET - Menu overview

The OXYGEN-NET menu is split up in three different sections: *Nodes, Sync* and *Settings*.

15.2.1 OXYGEN-NET Menu – Nodes

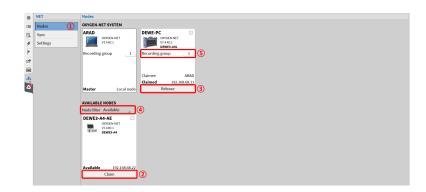


Fig. 15.9: OXYGEN-NET menu – Nodes

The *Nodes* menu (see (1) Fig. 15.9) provides an overview of all measurement devices connected to the same Ethernet network. The section *AVAILABLE NODES* displays all available devices, while the section *OXYGEN-NET SYSTEM* shows all Slave Units connected to this Master Unit.

To create or extend an OXYGEN-NET network, the *Enable OXYGEN-NET* option must be active on every device involved. Additionally, to allow a device to be claimed, the **Allow claim** option must be enabled. To enable and disable these options, refer to *OXYGEN-NET Menu – Settings*. Devices with *Enable OXYGEN-NET* and **Allow claim** active can be claimed by a Master Unit and connected to the OXYGEN-NET system. To claim a device, click the *Claim button* below the respective measurement device or select

multiple devices via the tick box and click any *Claim button* (see 2 in Fig. 15.9). Once claimed these devices are regarded as Slave Units.

Claimed devices can be released from the OXYGEN-NET system by clicking on the respective *Release* button (see ③ in Fig. 15.9). After releasing the measurement device, it can be used as a standalone device again or connected to another OXYGEN-NET system.

Node Filters

The Node filter (see 4 in Fig. 15.9) allows users to sort available measurement devices based on their status:

- Available: Displays devices on the network that are unclaimed and ready to be claimed.
- *Claimed*: Displays devices that have already been claimed by any Master Unit.
- All: Displays all devices connected to the Ethernet network, regardless of their claim status.

Recording Groups

The Recording Group input field (see (5) in Fig. 15.9) allows users to set a Recording Group ID. All devices with the same ID form a Recording Group, which shares all recording commands (start, pause, stop). This enables actions such as starting a recording on one Master Unit and stopping it on another.

All Master devices in a Recording Group receive identical data from a slave unit. By default, the recorded data is stored locally on each device within the group. Devices assigned to different Recording Groups operate independently. Recording IDs can be assigned to both master and slave devices, with numbers ranging from 0 to 999. Below are different examples based on an OXYGEN-NET Multi-Master system involving two Master Units and one Slave Unit:

- 1. Case: Identical ID on All Devices
 - Master 1: Recording ID 1
 - Master 2: Recording ID 1
 - Slave: Recording ID 1

In this setup, a recording command affects all three devices, and identical data is stored locally on each by default.

- 2. Case: Different ID on All Devices
 - Master 1: Recording ID 1
 - Master 2: Recording ID 2
 - Slave: Recording ID 3

Here, recording commands only affect the device with the matching ID. For example: A recording started on Master 1 must also be stopped on Master 1, and data is stored only on that device. A recording started on Master 2 functions independently. The Slave Unit with its own unique ID, cannot initiate or control recordings.

- 3. Case: Mixed IDs
 - Master 1: Recording ID 1
 - Master 2: Recording ID 2
 - Slave: Recording ID 1

In this scenario, a recording command issued on Master 1 will also affect the Slave Unit, resulting in identical data being stored on both devices. Master 2, with a different ID, operates independently.

NET Nodes Sync Settings	Sync SYNC SETTINGS Auto setup 1 DEWE3-A4L C9240543 DEWE-PC SYNC IN Internal	SYNC OUT S	EWE3-A4 220200 WE3-A4-AE YYNC IN # (SYNC I/O)	SYNC OUT TRION (SYNC OUT)		Internal: Locke
	SYNCHRONISATION INPU	т		SYNC	HRONISATION OUTPUT	
	○ Internal	• TRION (SYNC I/O)	⊖ GPS		ector: "SYNC"	
	○ PTP		⊖ PPS		RION (SYNC OUT)	
					ector: "AUX"	
				• N	one	O Frequency (AUX)

15.2.2 OXYGEN-NET Menu – Sync

Fig. 15.10: OXYGEN-NET menu – Sync

Auto Setup Slider

The Auto Setup slider (see (1) in Fig. 15.10) allows users to enable or disable automatic synchronization setup:

- *Enabled*: Synchronization is automatically configured by the DEWE3 enclosure. The synchronization is set to TRION-SYNC-BUS, and no manual settings can be changed while Auto Setup is active. If the Master device lacks measurement hardware (e.g., Notebook or PC), the first claimed Slave is automatically set as the Sync Master. By default, the Sync Master uses its internal time base as SYNCHRONIZATION INPUT.
- *Disabled*: Users can manually configure synchronization input and output settings. For more details, refer to *Sync settings*.

Sync Status Indicator

The Sync Status Indicator (see 2) in Fig. 15.10) displays the current synchronization status of the system:

- *Red*: No valid synchronization signal is connected.
- *Orange*: A valid synchronization signal is connected, but the system is not yet locked (this may take a few seconds and will lock automatically).
- Green: A valid synchronization signal is connected, and the system is locked.
- *Grey*: The synchronization signal is based on the system's internal clock.

The Sync Status Indicator is also available in the Action Bar when the Sync Setup window is closed (see 2 in Fig. 3.5). For additional details, refer to the *Troubleshooting* section.

15.2.3 OXYGEN-NET Menu – Settings

Ø	Oxygen NET	Settings
:=	Nodes	Enable Oxygen NET
	Sync	Allow claim
	Settings	

Fig. 15.11: OXYGEN-NET menu – Settings

In the *Settings* menu, the user can enable or disable the OXYGEN-NET functionality and select whether the measurement device is claimable or not.

If OXYGEN-NET is disabled, the measurement device can neither be used as a Master nor Slave Unit in an OXYGEN-NET system. Thus, the device is not visible to other users in the Nodes menu of other DEWE3 systems (see *OXYGEN-NET Menu – Nodes*). If OXYGEN-NET is enabled, the device can be used within OXYGEN-NET systems and is listed in the Nodes menu of other DEWE3 systems.

If *Allow claim* is enabled, the measurement device can either be used as a Master unit or be claimed by another device and used as a Slave unit. If *Allow claim* is disabled, the measurement device can only be used as a Master unit (and claim other devices) but not as a Slave unit. Fig. 15.12 illustrates this in OXYGEN, where *Allow claim* is disabled for the device DEWE-PC and enabled for DEWE3-A4-AE.

@	NET	Nodes
:=	Nodes	OXYGEN-NET SYSTEM
	Sync Settings	ARAD vxrgen.net vr.arc.i Recording group 1 Available Local node
		AVAILABLE NODES
		Node filter All
		ARAD DEWE-PC DEWE3-A4-AE DEWE3-AA-AE DEWE3-AA-AA-AE DEWE3-AA-AA-AE DEWE3-AA-AA-AE DEWE3-AA-AA-AA-AE DEWE3-AA-AA-AA-AA-AA-AA-AA DEWE3-AA-AA-AA-AA-AA-AA-AA-AA-AA-AA-AA-AA-AA
		Recording group 1
		Available Local node Not claimable 192.168.68.11 Claim

Fig. 15.12: Visibility varieties

The device DEWE3-A4-AE illustrates visibility for other users if OXYGEN-NET is enabled and *Allow Claim* is enabled. The device DEWE-PC illustrates visibility for other users if OXYGEN-NET is enabled and *Allow Claim* is disabled.

15.3 Setting up an OXYGEN-NET System

The following steps describe the procedure for configuring several devices to an OXYGEN-NET system. A detailed description of the following settings and properties is provided in *OXYGEN-NET - Menu overview*. Possible hardware connection schemes can be found in *OXYGEN-NET topologies*.

15.3.1 Generic setup

- 1. Connect all measurement devices that shall be used within the OXYGEN-NET system to the same ethernet network. Make sure that the IP addresses of all measurement devices are within the same subnet mask. If DHCP is enabled and no DHCP server is available, devices will default to the operating system fallback range (169.x.x.x).
- 2. Start OXYGEN on all measurement devices and Enable OXYGEN-NET in the OXYGEN-NET menu *Settings* on all devices.
- 3. Select *Allow claim* on the devices that shall be configured as slaves. Without enabling *Allow claim*, Slave Units cannot be claimed by Master Units.
- 4. Go to the OXYGEN-NET menu Nodes on the Master Unit. Based on the selected node filter, measurement device(s) will appear in the Available Nodes section. To claim a device, click the Claim button below the respective measurement device or select multiple devices via the tick box and click any Claim button.

Note: If a device should not be listed in the *Available Nodes* section though expected, refer *Troubleshooting*.

- 5. After claiming a device by the Master unit, it is listed in the OXYGEN-NET System section of the OXYGEN-NET menu Nodes. A claimed device functions as a Slave Unit and is controlled by its claiming Master Units. The first Master Unit to claim a measurement node is designated as the Claimer and performs the role of the Acquisition Master, responsible for coordinating the synchronized acquisition start across all nodes. A Slave Unit may be released from the OXYGEN-NET system again by clicking on the Release button.
- 6. After claiming a device, the screen of the Slave Unit will be locked, and the information* Claimed by X* will be displayed in the lower right corner of the software

Fig. 15.13: Claimed information on the Slave device. In this case, the Master device is named CAIRHIEN

V

OXYGEN Online Help, Release 7.6

15.3.2 Synchronization setup

SYNC-Setup using the internal TRION-SYNC

To synchronize measurement devices using only the TRION-SYNC-BUS, first, connect all devices using SYNC cables. Plug one end into the *SYNC OUT* connector of the Synchronization Master and the other into the *SYNC IN* connector of the next measurement unit. This daisy-chain setup allows the sync signal to be distributed across multiple devices (see Fig. 15.14). Note that synchronization cannot be transmitted via an Ethernet router—it must be directly wired between devices.

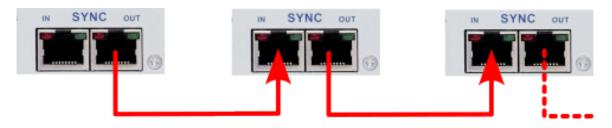


Fig. 15.14: Sync wiring of multiple measurement units using the TRION-SYNC-BUS

Next, configure the OXYGEN-NET Sync settings. The simplest approach is to enable Auto Setup, which automatically applies the correct synchronization settings. If manual configuration is required, follow these steps:

- 1. Go to the OXYGEN-NET menu Sync and disable Auto setup.
- 2. Select the measurement unit serving as Synchronization Master. In the SYNCHRONIZATION INPUT section select Internal. In the SYNCHRONIZATION OUTPUT section select TRION (SYNC OUT) for connector: "SYNC", and None for all other connectors.
- 3. For all other measurement Units select TRION (*SYNC I/O*) as input and TRION (*SYNC OUT*) as output. Set *None* for all other output connectors.

A green background color of the SYNC indicator on all devices will display that the sync wiring is correct and synchronization is completed. All Slave units are now synchronized to the relative time base of the Master unit and a measurement may be started by clicking the Record button on the Master unit.

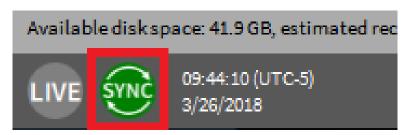
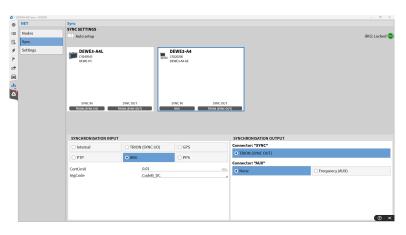


Fig. 15.15: Correct sync wiring


Note: If the background color of the SYNC indicator is orange, the sync wiring is incorrect. For further information, refer to *Troubleshooting*.

SYNC-Setup using an external synchronization signal

When using an external signal for system synchronization, the setup differs slightly.

First, ensure that each DEWE3 device has the appropriate hardware installed to receive the external signal. Then, connect the external synchronization source (e.g., GPS antenna, IRIG grandmaster clock, or PTP signal). It is not required to use the same synchronization source for every node—for example, one node may use GPS while another uses PTP.

Next, open the OXYGEN-NET Sync menu and disable Auto setup. Manually configure the SYNCHRO-NIZATION INPUT and SYNCHRONIZATION OUTPUT settings based on the external signal source and supported hardware. Once properly configured, the SYNC indicator on all devices will turn green, confirming successful synchronization. Fig. 15.16 illustrates an example where one device receives an IRIG signal from an external source, and another device synchronizes via TRION-SYNC.

For troubleshooting synchronization issues, refer to *Troubleshooting*.

Fig. 15.16: Example SYNC configuration using an external IRIG source

15.4 Setup generation on an OXYGEN-NET system

15.4.1 Setup configuration and shared settings

When configuring an OXYGEN setup for an OXYGEN-NET system, the user has to be aware of which settings are configured for the entire OXYGEN-NET network and which are only locally configured for individual devices. This subchapter provides a brief overview of how different settings and system configurations behave.

Measurement Screens & Reports

Configuring measurement screens and reports is a device-specific process. Any modifications, such as adding, editing, or removing screens or report pages, must be performed individually on each device. This also includes adding, editing, and removing instruments and the respective instrument properties.

Software Channels and software features (incl. channel properties)

Software channels can only be added or removed locally. For Slave Units, this must be done before establishing an OXYGEN-NET system. Once a Slave Unit is part of the network, existing software channels (e.g., modifying formulas) can be edited from any Master Unit. However, in Multi-Master systems, a Master Unit cannot modify software channels on another Master Unit.

Hardware Channels (incl. channel properties)

Hardware channels from any Slave Unit can be configured from any Master Unit. This includes all simple and advanced channel settings except the *Stored* column (green arrow in Fig. 15.17) in the data channels overview. For Multi-Master systems this means, property changes of hardware channels on one Master Unit will automatically be implemented on every other Master Unit. To prevent communication conflicts, we strongly recommend configuring these settings on only one Master Unit at a time.

Note: The sample rate of a channel can differ between each node, as long as only integer multiple sample rates are used.

OXYGEN Setup configurations

Besides the RECORDING FILENAME, all other OXYGEN Setup settings (described in *OXYGEN setup*) are only applied on the local device. As long as the RECORDING FILENAME does not include any header information, the recording filename will be the same across all devices.

Triggered Events

Triggered events are created locally. While trigger conditions can be based on received slave channels, trigger actions only affect the local device, except for recording actions. For more details on recording behavior, refer to *Recording data with an OXYGEN-NET system* with an OXYGEN-NET System. Additional information on working with triggered events can be found in *Triggered Events*.

Header Data

Defined headers in the Header Data section of the Measurement Settings are only generated locally and not shared amongst OXYGEN-NET systems. If header data prompts are enabled at recording start, they will only appear on the Master Unit, not on Slave Units. For more information on header data see *Header data*.

Recording configuration

For details on the recording behavior of devices within an OXYGEN-NET and possible configurations refer to *Recording data with an OXYGEN-NET system* with an OXYGEN-NET System.

System Configuration Tipps

Copy/Paste setups

If multiple devices require an identical or similar setup, including measurement screens and software channels, it is recommended to create a template setup file, copy it to all other devices, and adjust settings as needed.

Use remote control:

For configuring distributed Units before creating an OXYGEN-NET system we recommend using remote control tools like Remote Desktop Connection or a VNC-Tool. This facilitates configuring local settings like setting up measurement screens, software channels, and similar.

Distribute calculations:

Keep in mind that all calculations (from simple math formulas to more complex features like power analysis) are rendered on the device where they are generated. Distributing these calculations across multiple devices in an OXYGEN-NET system can reduce system load for devices near capacity. Examples:

• If a Slave Unit is near full capacity, do not perform demanding calculations on the Slave, but transfer the data to the Master and perform calculations there.

• If a Master Unit is near capacity perform the calculation on the Slave and only transfer the calculation results and not the full raw data.

See *Data transfer and storage* for details on how to transfer and store specific channels only.

15.4.2 Data transfer and storage

In the channel list, the user can decide on various data transfer and storage settings for every single channel via the columns

- Active: the slider marked with an orange arrow in Fig. 15.17 will activate or deactivate the data acquisition from a channel
- Stored: the red button marked with a green arrow in Fig. 15.17 will enable the storing of the data
- *Trans*.: the green button marked with a blue arrow in Fig. 15.17 will enable the data transfer from the Slave unit to the Master unit.

Note: It is not possible to transfer data from the Master Unit to a Slave Unit nor between Slave Units but only from the Slave Units to the Master Unit.

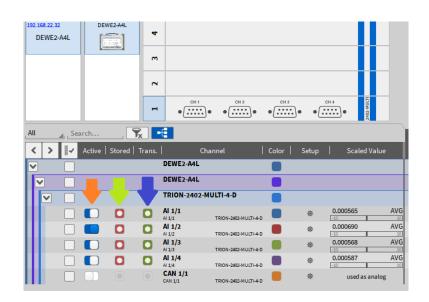
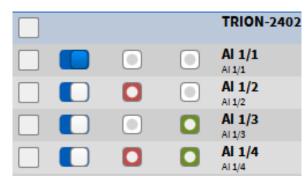
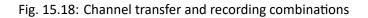




Fig. 15.17: Slave unit channels visible in the Master units' Channel List

Fig. 15.18 shows the following possible combinations:

- Channel A1/1 will only be acquired but not stored or transferred. Data may only be used for math calculations on the Slave unit.
- Channel A1/2 will be stored on the Slave unit but not on the Master unit
- Channel A1/3 will be transferred to the Master unit but neither stored on the Slave unit nor on the Master unit. The channel may only be used for math calculations on the Slave unit or the Master unit.
- Channel A1/4 will be transferred to the Master unit and stored both on the Slave unit and the Master unit.

How to store data on a Master Unit without storing it on a Slave Unit

To prevent data from being stored on a Slave Unit, assign the Slave Unit a different **Recording Group ID** than the Master Unit. This results in no recording taking place on the Slave Unit and consequently, no data being saved on it.

15.4.3 Save & load setup

When a setup is saved on a Master Unit, the configuration of any connected Slave Units (including channel settings, measurement screen configurations, etc.) is included in the setup file stored on the Master Unit. No separate setup file is saved on the Slave Units automatically.

When loading a setup file on a Master Unit that includes an OXYGEN-NET configuration, OXYGEN attempts to automatically claim the required Slave Units during the setup load process. If the Slave unit cannot be claimed, the hardware mismatch dialog will appear (see Fig. 3.13).

Note: OXYGEN must already be running on the Slave Units when loading a setup on a Master Unit, as it does not start automatically when the setup is loaded.

Save & load setup for a Multi-Master System

In a Multi-Master system, successfully loading a setup on one Master Unit will overwrite the current setup on any connected Slave Units and update shared settings across all connected Master Units. To simplify working with multiple Master Units and minimize the risk of errors we suggest the following workflow:

- 1. Create a general setup file for an OXYGEN-NET system on one Master Unit.
- 2. Copy this file to all other Master Units.
- 3. Load the copied file on each Master Unit.
- 4. After successfully loading the setup files, perform any further adjustments.

15.5 Recording data with an OXYGEN-NET system

OXYGEN-NET systems support the same recording options as an individual system does. However, due to the possibilities of Multi-Master systems and multiple Recording Groups various recording behaviors arise. In the following, we will discuss potential recording behaviors within an OXYGEN-NET system.

Recording Groups

All devices with the same Recording Group ID form a Recording Group. All devices within the same recording group share their recording commands: start recording, pause recording, and stop recording. Meaning if any of these actions are performed on any device within a Recording Group, every device within the Recording Group will follow this command. For examples cases see paragraph Recording Groups in section *OXYGEN-NET Menu* – *Nodes*.

Manual recording

After pressing the Record button on any Master Unit within the same Recording Group, a recording is started on every device within the Recording Group of the Master Unit. The same applies to pausing and stopping recordings. All devices with the identical Recording ID will follow the command. For details about Recording Groups as well as example cases see section *OXYGEN-NET Menu* – *Nodes*.

Note: In Multi-Master systems, recording is blocked as soon as a master device has opened the Data Channels menu. Further, as soon as one Master Unit exits the Data Channel menu, every other Master Unit also exits the Data Channel menu.

After stopping a recording, the measurement will be stored the following way in general:

- Any Master Unit stores all transferred data plus data acquired by the Master Unit itself (if available) locally.
- Any Slave Unit stores its respective data locally. One Slave Unit does not store any data from different slave units.

Note: Data transfer and storage settings (see *Data transfer and storage*) significantly influence the finally stored measurement files.

Triggered recording

Triggered recording is supported for OXYGEN-NET systems. The OXYGEN-NET system takes into account all trigger events defined on any Master Unit. This enables flexible trigger setups, but also a high susceptibility to errors for ill-considered trigger events. Individual trigger settings on a slave device are ignored.

User-reduced statistics recording is supported (see *Triggered Events*). The user-reduced statistics data are not transferred from the Slave units to the Master unit to avoid an increase in the data to be transferred. They are calculated on the Master unit for the Slave unit channels that are transferred to the Master unit.

Multi-File recording

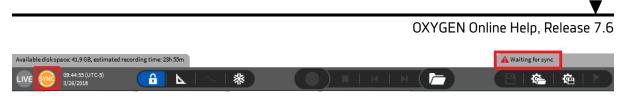
OXYGEN-NET systems support Multi-File Recording. When enabled on a Master Unit, the setting also applies to data files stored locally on Slave Units. For seamless recording, it is recommended to use identical Multi-File configurations across all Master Units with the same Recording ID. Any Multi-File settings configured on a Slave Unit will be ignored.

15.6 Additional Information

- Typical data transfer rates (80 MB/s):
 - 16 bit: up to 350 channels @ 100 kHz
 - 24 bit: up to 350 channels @ 50 kHz
- The Master unit can either be a measurement unit with TRION hardware or a laptop without TRION hardware. If a laptop without TRION hardware is used as Master Unit, the first Slave unit claimed by the Master unit is defined as Sync master.
- The sync wiring can be done before OXYGEN is started or when OXYGEN is already running.
- The setup on the Slave units must be roughly prepared before claiming them, only existing channels can be configured from the master.
- If the hard disk of the Master unit is full, the recording will stop automatically on the Master unit and on all Slave units.
- If the hard disk of a Slave unit is full, the recording will only stop on the affected Slave unit but not on the other devices.
- If the software mode of the Master unit is switched to PLAY mode, because a data file is opened, the Slave units are released from the Master unit. To avoid such scenario, use OXYGEN Viewer.
- The Node names are the operating systems host names. These can be edited in e.g. Windows under *System* → *Info* → *Change PC Name*.
- ORION DAQ/DSA hardware is not supported with OXYGEN-NET.

15.7 Troubleshooting

15.7.1 General troubleshooting


Device(s) not listed in the Available nodes

If a device is not listed in the Available Nodes section as expected, make sure that

- The Node filter is set to All or Available
- OXYGEN-NET is enabled on the missing measurement device
- The network connection is working
- The IP address of the missing measurement device is within the same subnet range

Sync issues

If the sync wiring is incorrect, the background color of the SYNC indicator will be orange and the message Waiting for sync will be displayed in the lower right corner of the software (see Fig. 15.19). If this appears, make sure that the sync wiring is correct. For further information, refer to OXYGEN-NET menu – Sync and Fig. 15.14.

• If the sync wire is disconnected during the measurement, a *Sync Lost* marker is added to the *Event List* and the message *Waiting for sync* will be displayed in the lower right corner of the software. The background color of the *SYNC indicator* will become orange.

-0:56 16.0 kB stored (106.8 GB free, est. 237d 21h	-0:50 h remaining) Storing started: 1	-0:44 Aon Mar 26 10:48:16 2018 GMT+0	-0:38	-0:32	-0:26	-0:20	-0:14	Waiting for sync
REC 10:48:20 (UTC+2) 3/26/2018		ô L	*			N N (3	

Fig. 15.20: Software feedback if sync signal is lost during the measurement

- The recording will be continued until the *Stop* button is pressed. Be aware that the recording will not be time synchronous any more without valid sync connection.
- A reconnection of the sync wire will not help to resync data during recording. The measurement must be stopped before data is time synchronous again.
- If the sync wire is reconnected during the measurement, the SYNC indicator will become red and the message *Invalid synchronization signal* will be displayed in the lower right corner of the software.

-0746	-0.40	-01.04	-0.28	40.22	-0116	-0110	-0004		utus
20.0 kB stored (106.8 GB free, est. 2y 32d re	maining) Storing starte	: Mon Mar 26 10:48:16 2018 GMT+0200						A Invalid synchr	onization signal
REC 5000 10:48:29 (UTC+2) 3/26/2018			*				Э		@ @ ▶

Fig. 15.21: Software feedback if sync signal is reconnected during the measurement

• If the system is configured in a way, that is a not allowed topology, there is the following error message next to the SYNC indicator within the Sync settings: *No valid sync setup found for node XY*.

٠	Oxygen NET	Sync	
=	Nodes	Auto setup	Setup: No valid sync setup found for node DEWE2-A42-42
0	Sync	DEWE2-M4s	DEWE2-A4L
	Settings	UP BEADDE LacelNode	CENESH CENESHAR

Fig. 15.22: Error message displaying a measurement node with an invalid sync setup

• If there is a problem, that at least one node cannot be synchronized, there is an error message saying: *Out of Sync.* In this case check each measurement node individually.

Slave loses network connection

If a slave device loses the network connection during the measurement, the master device adds a *Node Lost* marker to the Event List and displays the message *Slave Node Lost:...* in the lower right corner of the software (see Fig. 15.23).

V OXYGEN Online He	elp, Release	7.6					
	0:02		NOD	ELOST	b		1
	🔥 Sla	we node los	t: DEWE	2-A4L			
						Þ	

Fig. 15.23: Software feedback on master device if slave node loses network connection

The affected slave device adds a *Node Lost* marker to the Event List and opens a *Master Lost* pop-up menu (see Fig. 15.24).

Master lost
Master node lost. Your can wait for the master node to return or unlock from master node (Recording will stay active).
Unlock from master node

Fig. 15.24: Software feedback on slave device if slave node loses network connection

- If the user selects *Unlock from master node*, the recording will be continued until the *Stop* button is pressed and the slave device can be used as standalone unit.
- If the network connection is fixed in the meantime, the pop-up window on the slave device will close again and the slave device can be controlled by the master device again. Data recording is still synchronous, because the sync connection was still active. A *Node found* marker will be added to the Event List.

The measurement on potential other slave devices is not affected and they do not realize that a slave node was lost.

Master Unit loses network connection

If the master device loses the network connection during the measurement, the master device adds a *Node Lost* marker to the Event List and displays the message *Slave Node Lost:...* in the lower right corner of the software (see Fig. 15.23).

All slave devices add a *Node Lost* marker to the Event List and open a *Master Lost* pop-up menu (see Fig. 15.24).

- If the user selects *Unlock from master node*, the recording will be continued until the *Stop* button is pressed and the slave devices can be used as standalone units.
- If the network connection is fixed in the meantime, the pop-up window on the slave device will close again and the slave devices can be controlled by the master device again. Data recording is still synchronous, because the sync connection was still active. A *Node found* marker will be added to the Event List.

15.7.2 Multi-Master-specific troubleshooting

Loading setups simultaneously

It is NOT recommended to load setups simultaneously within an OXYGEN-NET system. Loading setups on multiple master clients at the same time may cause extended waiting times and potential issues when determining an acquisition master. To avoid errors, load setups sequentially, one master client at a time.

Losing system devices

This section addresses scenarios involving the unintentional disconnection of any device from an OXYGEN-NET system, which could result from a network disconnection, device crash, power loss, or similar issues.

Losing system devices during recording

If a system device is lost during an active recording, a full system software restart is recommended once the recording has stopped. A full restart involves:

- Releasing all nodes on every master client
- Closing and reopening OXYGEN on each master and slave device,
- Reloading the existing OXYGEN setups on every device.

Losing system devices during non-recording

If a device is lost while the system is not recording or armed, the response depends on the type of device lost:

- If the acquisition master is lost: All master devices will release their measurement nodes. A full system software restart, as described above, is recommended.
- If any master client (other than the acquisition master) is lost: The affected master will release its claimed slaves, but the overall system will remain unaffected. Restarting OXYGEN on the affected device should resolve the issue. If issues persist, perform a full system software restart.
- If any measurement node is lost: Each master device that had the node claimed will release it and display a notification: "Slave node lost: Slave_X." A full system software restart is recommended in this case.

15.8 Limitations of OXYGEN-NET

No data transfer between different Slave units or from Master unit to Slave unit. Data can only be transferred from Slave units to Master units.